Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition
- Авторы: Ismailov M.I.1,2, Erkovan S.1
-
Учреждения:
- Gebze Technical University, Department of Mathematics
- Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan
- Выпуск: Том 59, № 5 (2019)
- Страницы: 791-808
- Раздел: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180577
- DOI: https://doi.org/10.1134/S0965542519050087
- ID: 180577
Цитировать
Аннотация
We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson’s), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method.
Об авторах
M. Ismailov
Gebze Technical University, Department of Mathematics; Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan
Автор, ответственный за переписку.
Email: mismailov@gtu.edu.tr
Турция, Gebze/Kocaeli, 41400; Baku, AZ1141
S. Erkovan
Gebze Technical University, Department of Mathematics
Автор, ответственный за переписку.
Email: serkovan@gtu.edu.tr
Турция, Gebze/Kocaeli, 41400
Дополнительные файлы
