Why Do We Need Voronoi Cells and Delaunay Meshes? Essential Properties of the Voronoi Finite Volume Method
- 作者: Gärtner K.1, Kamenski L.1
-
隶属关系:
- m4sim GmbH, Seydelstr. 31
- 期: 卷 59, 编号 12 (2019)
- 页面: 1930-1944
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180906
- DOI: https://doi.org/10.1134/S096554251912008X
- ID: 180906
如何引用文章
详细
Unlike other schemes that locally violate the essential stability properties of the analytic parabolic and elliptic problems, Voronoi finite volume methods (FVM) and boundary conforming Delaunay meshes provide good approximation of the geometry of a problem and are able to preserve the essential qualitative properties of the solution for any given resolution in space and time as well as changes in time scales of multiple orders of magnitude. This work provides a brief description of the essential and useful properties of the Voronoi FVM, application examples, and a motivation why Voronoi FVM deserve to be used more often in practice than they are currently.
作者简介
K. Gärtner
m4sim GmbH, Seydelstr. 31
编辑信件的主要联系方式.
Email: info@m4sim.de
德国, Berlin, 10117
L. Kamenski
m4sim GmbH, Seydelstr. 31
Email: info@m4sim.de
德国, Berlin, 10117
补充文件
