On the Interaction of Boundary Singular Points in the Dirichlet Problem for an Elliptic Equation with Piecewise Constant Coefficients in a Plane Domain
- Авторлар: Bogovskii A.M.1, Denisov V.N.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- Шығарылым: Том 59, № 12 (2019)
- Беттер: 2145-2163
- Бөлім: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180950
- DOI: https://doi.org/10.1134/S0965542519110046
- ID: 180950
Дәйексөз келтіру
Аннотация
For an elliptic equation in divergent form with a discontinuous scalar piecewise constant coefficient in an unbounded domain \(\Omega \subset {{\mathbb{R}}^{2}}\) with a piecewise smooth noncompact boundary and smooth discontinuity lines of the coefficient, the \({{L}_{p}}\)-interaction of a finite and an infinite singular points of a weak solution to the Dirichlet problem is studied in a class of functions with the first derivatives from \({{L}_{p}}(\Omega )\) in the entire range of the exponent \(p \in (1,\infty )\).
Негізгі сөздер
Авторлар туралы
A. Bogovskii
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: abogovski@gmail.com
Ресей, Moscow, 119991
V. Denisov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: vdenisov2008@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
