Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 56, № 1 (2016)

Article

Locally extra-optimal regularizing algorithms and a posteriori estimates of the accuracy for ill-posed problems with discontinuous solutions

Leonov A.

Аннотация

Local a posteriori estimates of the accuracy of approximate solutions to ill-posed inverse problems with discontinuous solutions from the classes of functions of several variables with bounded variations of the Hardy or Giusti type are studied. Unlike global estimates (in the norm), local estimates of accuracy are carried out using certain linear estimation functionals (e.g., using the mean value of the solution on a given fragment of its support). The concept of a locally extra-optimal regularizing algorithm for solving ill-posed inverse problems, which has an optimal in order local a posteriori estimate, was introduced. A method for calculating local a posteriori estimates of accuracy with the use of some distinguished classes of linear functionals for the problems with discontinuous solutions is proposed. For linear inverse problems, the method is bases on solving specialized convex optimization problems. Examples of locally extra-optimal regularizing algorithms and results of numerical experiments on a posteriori estimation of the accuracy of solutions for different linear estimation functionals are presented.

Computational Mathematics and Mathematical Physics. 2016;56(1):1-13
pages 1-13 views

Infinite-horizon boundary control of distributed systems

Maksimov V., Osipov Y.

Аннотация

For a boundary controlled dynamic system, algorithms for solving the problem of tracking reference motion and the problem of tracking reference control are described. The algorithms are robust to information noise and computational errors. The solution method is based on the extremal shift method from the theory of positional differential games.

Computational Mathematics and Mathematical Physics. 2016;56(1):14-25
pages 14-25 views

Solution of the pollutant concentration optimization problem with restrictions on the intensity of sources

Agoshkov V., Novikov I.

Аннотация

An optimization problem for the mean pollution concentration in a region was formulated. An algorithm for solving the problem with restrictions on “controls” of local sources was proposed. Numerical experiments illustrating theoretical statements concerning the problem and the effectiveness of the proposed algorithm were performed.

Computational Mathematics and Mathematical Physics. 2016;56(1):26-42
pages 26-42 views

Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

Belkina T., Konyukhova N., Kurochkin S.

Аннотация

Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér–Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of “degenerate” problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

Computational Mathematics and Mathematical Physics. 2016;56(1):43-92
pages 43-92 views

Finite-difference methods for solving loaded parabolic equations

Abdullayev V., Aida-zade K.

Аннотация

Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.

Computational Mathematics and Mathematical Physics. 2016;56(1):93-105
pages 93-105 views

Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain

Bazzaev A., Shkhanukov-Lafishev M.

Аннотация

Locally one-dimensional difference schemes are considered as applied to a fractional diffusion equation with variable coefficients in a domain of complex geometry. They are proved to be stable and uniformly convergent for the problem under study.

Computational Mathematics and Mathematical Physics. 2016;56(1):106-115
pages 106-115 views

Analytical solutions for the fractional nonlinear cable equation using a modified homotopy perturbation and separation of variables methods

Irandoust-Pakchin S., Javidi M., Kheiri H.

Аннотация

In this paper, we first introduce a new homotopy perturbation method for solving a fractional order nonlinear cable equation. By applying proposed method the nonlinear equation it is changed to linear equation for per iteration of homotopy perturbation method. Then, we solve obtained problems with separation method. In examples, we illustrate that the exact solution is obtained in one iteration by convenience separating of source term in given equation.

Computational Mathematics and Mathematical Physics. 2016;56(1):116-131
pages 116-131 views

Numerical simulation of the process of nonequilibrium counterflow capillary imbibition

Bogatyreva E., Manakova N.

Аннотация

The convergence of the Galerkin method of solving the Cauchy–Dirichlet problem for the Barenbratt–Gilman equation is studied. On the basis of theoretical results, a numerical algorithm for this problem is developed. Results of a numerical experiment are presented.

Computational Mathematics and Mathematical Physics. 2016;56(1):132-139
pages 132-139 views

Discrete source method for analysis of fluorescence enhancement in the presence of plasmonic structures

Grishina N., Eremin Y., Sveshnikov A.

Аннотация

A mathematical model of fluorescence enhancement in the presence of a plasmonic structure is examined by applying a modified discrete source method that takes into account the nonlocal interaction between the elements of the plasmonic structure. The fluorescence quantum yield is computed using a generalization of the optical theorem to the case of a local excitation source. The elements of the plasmonic structure are optimized in order to maximize the fluorescence enhancement factor.

Computational Mathematics and Mathematical Physics. 2016;56(1):140-147
pages 140-147 views

Mathematical simulation of gas–liquid mixture flow in a reservoir and a wellbore with allowance for the dynamical interactions in the reservoir–well system

Abbasov E., Feyzullayev K.

Аннотация

Fluid dynamic processes related to mature oil field development are simulated by applying a numerical algorithm based on the gas–liquid mixture flow equations in a reservoir and a wellbore with allowance for the dynamical interaction in the reservoir–well system. Numerical experiments are performed in which well production characteristics are determined from wellhead parameters.

Computational Mathematics and Mathematical Physics. 2016;56(1):148-160
pages 148-160 views

Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects

Abgaryan K., Reviznikov D.

Аннотация

A three-level scheme for modeling nanosized semiconductor heterostructures with account for spontaneous and piezoelectric polarization effects is presented. The scheme combines quantummechanical calculations at the atomic level for obtaining the charge density on heterointerfaces, calculation of the distribution of carriers in the heterostructure based on the solution to the Schrödinger and Poisson equations, and the calculation of electron mobility in the two-dimensional electron gas with account for various scattering mechanisms. To speed up the computations of electron density in the heterostructure, the approach based on the approximation of the nonlinear dependence of the electron density on the potential in combination with the linearization of the Poisson equation is used. The efficiency of this approach in problems of the class in question is demonstrated.

Computational Mathematics and Mathematical Physics. 2016;56(1):161-172
pages 161-172 views

Category-theoretic models of algebraic computer systems

Kovalyov S.

Аннотация

A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems’ architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

Computational Mathematics and Mathematical Physics. 2016;56(1):173-184
pages 173-184 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».