Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 56, № 8 (2016)

Article

Algorithm for computing the covering constant of a linear operator on a cone

Zhukovskiy S., Zhukovskaya Z.

Аннотация

An algorithm for computing the covering constant for the restriction of a linear operator to a cone defined by a finite set of inequalities is proposed. After a finite number of steps, the algorithm reduces the original problem to one of finding the eigenvalues of linear operators.

Computational Mathematics and Mathematical Physics. 2016;56(8):1373-1381
pages 1373-1381 views

Multiple solution of systems of linear algebraic equations by an iterative method with the adaptive recalculation of the preconditioner

Akhunov R., Gazizov T., Kuksenko S.

Аннотация

The mean time needed to solve a series of systems of linear algebraic equations (SLAEs) as a function of the number of SLAEs is investigated. It is proved that this function has an extremum point. An algorithm for adaptively determining the time when the preconditioner matrix should be recalculated when a series of SLAEs is solved is developed. A numerical experiment with multiply solving a series of SLAEs using the proposed algorithm for computing 100 capacitance matrices with two different structures—microstrip when its thickness varies and a modal filter as the gap between the conductors varies—is carried out. The speedups turned out to be close to the optimal ones.

Computational Mathematics and Mathematical Physics. 2016;56(8):1382-1387
pages 1382-1387 views

Hausdorff methods for approximating the convex Edgeworth–Pareto hull in integer problems with monotone objectives

Pospelov A.

Аннотация

Adaptive methods for the polyhedral approximation of the convex Edgeworth–Pareto hull in multiobjective monotone integer optimization problems are proposed and studied. For these methods, theoretical convergence rate estimates with respect to the number of vertices are obtained. The estimates coincide in order with those for filling and augmentation H-methods intended for the approximation of nonsmooth convex compact bodies.

Computational Mathematics and Mathematical Physics. 2016;56(8):1388-1401
pages 1388-1401 views

Numerical optimization method for packing regular convex polygons

Galiev S., Lisafina M.

Аннотация

An algorithm is presented for the approximate solution of the problem of packing regular convex polygons in a given closed bounded domain G so as to maximize the total area of the packed figures. On G a grid is constructed whose nodes generate a finite set W on G, and the centers of the figures to be packed can be placed only at some points of W. The problem of packing these figures with centers in W is reduced to a 0-1 linear programming problem. A two-stage algorithm for solving the resulting problems is proposed. The algorithm finds packings of the indicated figures in an arbitrary closed bounded domain on the plane. Numerical results are presented that demonstrate the effectiveness of the method.

Computational Mathematics and Mathematical Physics. 2016;56(8):1402-1413
pages 1402-1413 views

Asymptotics of the solution to a singularly perturbed elliptic problem with a three-zone boundary layer

Beloshapko V., Butuzov V.

Аннотация

For a singularly perturbed elliptic boundary value problem, an asymptotic expansion of the boundary-layer solution is constructed and justified in the case when the boundary layer consists of three zones with different behavior of the solution, which is caused by the multiplicity of the root of the degenerate equation.

Computational Mathematics and Mathematical Physics. 2016;56(8):1414-1425
pages 1414-1425 views

Mixed boundary value problems for steady-state magnetohydrodynamic equations of viscous incompressible fluid

Alekseev G.

Аннотация

The inhomogeneous boundary value problem for the steady-state magnetohydrodynamic equations of viscous incompressible fluid under the Dirichlet conditions for the velocity and mixed boundary conditions for the electromagnetic field is considered. Sufficient conditions for the data that ensure the global solvability of this problem and the local uniqueness of its solution are found.

Computational Mathematics and Mathematical Physics. 2016;56(8):1426-1439
pages 1426-1439 views

Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture

Elaeva M., Zhukov M., Shiryaeva E.

Аннотация

The hodograph method is used to construct a solution describing the interaction of weak discontinuities (rarefaction waves) for the problem of mass transfer by an electric field (zonal electrophoresis). Mathematically, the problem is reduced to the study of a system of two first-order quasilinear hyperbolic partial differential equations with data on characteristics (Goursat problem). The solution is constructed analytically in the form of implicit relations. An efficient numerical algorithm is described that reduces the system of quasilinear partial differential equations to ordinary differential equations. For the zonal electrophoresis equations, the Riemann problem with initial discontinuities specified at two different spatial points is completely solved.

Computational Mathematics and Mathematical Physics. 2016;56(8):1440-1453
pages 1440-1453 views

Analysis of a method for computing the speed of sound in a medium with inclusions

Ivanov V.

Аннотация

A method for computing the speed of sound in a medium with inclusions with the help of the theory of multiple scattering of a plane wave on a doubly periodic multilayered lattice of transparent particles is proposed.

Computational Mathematics and Mathematical Physics. 2016;56(8):1454-1463
pages 1454-1463 views

Modified splitting method for solving the nonstationary kinetic particle transport equation

Moiseev N., Shmakov V.

Аннотация

A modified splitting method for solving the nonstationary kinetic equation of particle (neutron) transport without iteration with respect to the collision integral is proposed. According to the modification, the solutions of the first-stage integrodifferential equations and the collision integrals are found using analytical rather than finite-difference methods. The solution method is naturally extended to multidimensional problems and is well suited for massive parallelism.

Computational Mathematics and Mathematical Physics. 2016;56(8):1464-1473
pages 1464-1473 views

Numerical analysis of the dynamics of distributed vortex configurations

Govorukhin V.

Аннотация

A numerical algorithm is proposed for analyzing the dynamics of distributed plane vortex configurations in an inviscid incompressible fluid. At every time step, the algorithm involves the computation of unsteady vortex flows, an analysis of the configuration structure with the help of heuristic criteria, the visualization of the distribution of marked particles and vorticity, the construction of streamlines of fluid particles, and the computation of the field of local Lyapunov exponents. The inviscid incompressible fluid dynamic equations are solved by applying a meshless vortex method. The algorithm is used to investigate the interaction of two and three identical distributed vortices with various initial positions in the flow region with and without the Coriolis force.

Computational Mathematics and Mathematical Physics. 2016;56(8):1474-1487
pages 1474-1487 views

Direct simulation of the turbulent boundary layer on a plate

Krupa V.

Аннотация

A numerical method for the integration of three-dimensional Navier–Stokes equations for compressible fluid as applied to direct numerical simulation is proposed. By way of example, the boundary layer on a plate is simulated. The computations were carried out for Reθ = 1500. The computational grid consisted of a half billion nodes. The flow region includes the laminar, transitional, and turbulent zones. The numerically obtained distributions of average velocity, friction, and pulsations are compared with experimental data and available numerical solutions.

Computational Mathematics and Mathematical Physics. 2016;56(8):1488-1505
pages 1488-1505 views

Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications

Kozelkov A., Kurulin V., Lashkin S., Shagaliev R., Yalozo A.

Аннотация

Two main issues of the efficient usage of computational fluid dynamics (CFD) in industrial applications—simulation of turbulence and speedup of computations—are analyzed. Results of the investigation of potentials of the eddy-resolving approaches to turbulence simulation in industrial applications with the use of arbitrary unstructured grids are presented. Algorithms for speeding up the scalable high-performance computations based on multigrid technologies are proposed.

Computational Mathematics and Mathematical Physics. 2016;56(8):1506-1516
pages 1506-1516 views

Transformations of variables invariant under minimization of binary functions of multivalued arguments

Panov A.

Аннотация

A number of transformations are introduced that are invariant under minimization problems and make it possible to reduce the maximum possible number of distinct columns in the matrix of zeros of an arbitrary binary function of multivalued arguments. As a result, simpler disjunctive normal forms are constructed. Complexity bounds for the constructed disjunctive normal forms of arbitrary binary functions of k-valued arguments are given.

Computational Mathematics and Mathematical Physics. 2016;56(8):1517-1521
pages 1517-1521 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».