Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 57, № 4 (2017)

Article

Analytic continuation of the Appell function F1 and integration of the associated system of equations in the logarithmic case

Bezrodnykh S.

Аннотация

The Appell function F1 (i.e., a generalized hypergeometric function of two complex variables) and a corresponding system of partial differential equations are considered in the logarithmic case when the parameters of F1 are related in a special way. Formulas for the analytic continuation of F1 beyond the unit bicircle are constructed in which F1 is determined by a double hypergeometric series. For the indicated system of equations, a collection of canonical solutions are presented that are two-dimensional analogues of Kummer solutions well known in the theory of the classical Gauss hypergeometric equation. In the logarithmic case, the canonical solutions are written as generalized hypergeometric series of new form. The continuation formulas are derived using representations of F1 in the form of Barnes contour integrals. The resulting formulas make it possible to efficiently calculate the Appell function in the entire range of its variables. The results of this work find a number of applications, including the problem of parameters of the Schwarz–Christoffel integral.

Computational Mathematics and Mathematical Physics. 2017;57(4):559-589
pages 559-589 views

On the length preserving approximation of plane curves by circular arcs

Kurnosenko A.

Аннотация

A technique for the length preserving approximation of plane curves by two circular arcs is analyzed. The conditions under which this technique can be applied are extended, and certain consequences of the proved results unrelated to the approximation problem are discussed. More precisely, inequalities for the length of a convex spiral arc subject to the given boundary conditions are obtained. Conjectures on curve closeness conditions obtained using computer simulation are discussed.

Computational Mathematics and Mathematical Physics. 2017;57(4):590-606
pages 590-606 views

Approximations to time-optimal boundary controls for weak generalized solutions of the wave equation

Ivanov D., Potapov M.

Аннотация

For the wave equation, time-optimal control problems with two-sided boundary controls of three basic types are considered in classes of weak generalized solutions. Stable algorithms for computing approximate optimal times and optimal boundary controls are developed by modifying algorithms proposed earlier for the case of strong generalized solutions. The approximate solutions are proved to converge as the parameters of the finite-dimensional approximation are asymptotically refined and the errors in the specified terminal functions are reduced.

Computational Mathematics and Mathematical Physics. 2017;57(4):607-625
pages 607-625 views

An analytic–numerical method for the construction of the reference law of operation for a class of mechanical controlled systems

Mizhidon A., Mizhidon K.

Аннотация

An analytic–numerical method for the construction of a reference law of operation for a class of dynamic systems describing vibrations in controlled mechanical systems is proposed. By the reference law of operation of a system, we mean a law of the system motion that satisfies all the requirements for the quality and design features of the system under permanent external disturbances. As disturbances, we consider polyharmonic functions with known amplitudes and frequencies of the harmonics but unknown initial phases. For constructing the reference law of motion, an auxiliary optimal control problem is solved in which the cost function depends on a weighting coefficient. The choice of the weighting coefficient ensures the design of the reference law. Theoretical foundations of the proposed method are given.

Computational Mathematics and Mathematical Physics. 2017;57(4):626-633
pages 626-633 views

Optimization of loading places and load response functions for stationary systems

Abdullayev V., Aida-zade K.

Аннотация

The problem of optimizing loading places and corresponding load response functions with respect to objects described by systems of loaded ordinary differential equations is solved numerically. Analytical formulas for the gradient of the functional with respect to the optimized load parameters are derived to solve the problem by applying first-order numerical methods. Results of numerical experiments are presented. The approach proposed can also be used to optimize load parameters in distributed systems described by partial differential equations, which are reduced to the considered problem by applying the method of lines.

Computational Mathematics and Mathematical Physics. 2017;57(4):634-644
pages 634-644 views

Pareto set reduction based on an axiomatic approach with application of some metrics

Noghin V.

Аннотация

A multicriteria choice problem involving a decision-maker’s binary preference relation is considered. Several two-stage methods are proposed for its solution. First, the Pareto set is reduced by applying an axiomatic approach. Then the problem is scalarized on the resulting set by using the Chebyshev or Euclidean metric. The methods proposed are substantiated with the help of well-known and new techniques for characterizing weakly efficient and proper efficient points. Illustrative examples are given.

Computational Mathematics and Mathematical Physics. 2017;57(4):645-652
pages 645-652 views

On the holomorphic regularization of singularly perturbed systems of differential equations

Kachalov V.

Аннотация

A method for constructing pseudo-holomorphic solutions to strongly nonlinear singularly perturbed systems of differential equations, which a logical continuation of the Lomov regularization method, is proposed. The existence of integrals of such systems, holomorphic in the small parameter, is proven, and sufficient conditions for the convergence of expansion of solutions to these systems in powers of the small parameter in the usual sense are obtained.

Computational Mathematics and Mathematical Physics. 2017;57(4):653-660
pages 653-660 views

Third-order accurate conservative method on unstructured meshes for gasdynamic simulations

Shirobokov D.

Аннотация

A third-order accurate finite-volume method on unstructured meshes is proposed for solving viscous gasdynamic problems. The method is described as applied to the advection equation. The accuracy of the method is verified by computing the evolution of a vortex on meshes of various degrees of detail with variously shaped cells. Additionally, unsteady flows around a cylinder and a symmetric airfoil are computed. The numerical results are presented in the form of plots and tables.

Computational Mathematics and Mathematical Physics. 2017;57(4):661-679
pages 661-679 views

Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes

Bakhvalov P., Kozubskaya T.

Аннотация

In this paper, 1-exact vertex-centered finite-volume schemes with an edge-based approximation of fluxes are constructed for numerically solving hyperbolic problems on hybrid unstructured meshes. The 1-exactness property is ensured by introducing a new type of control volumes, which are called semitransparent cells. The features of a parallel algorithm implementing the computations using semitransparent cells on modern supercomputers are described. The results of solving linear and nonlinear test problems are given.

Computational Mathematics and Mathematical Physics. 2017;57(4):680-697
pages 680-697 views

On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body

Smirnov Y., Tsupak A.

Аннотация

A vector problem of electromagnetic wave diffraction by an inhomogeneous volumetric body is considered in the classical formulation. The uniqueness theorem for the solution to the boundary value problem for the system of Maxwell’s equations is proven in the case when the permittivity is real and varies jumpwise on the boundary of the body. A vector integro-differential equation for the electric field is considered. It is shown that the operator of the equation is continuously invertible in the space of square-summable vector functions.

Computational Mathematics and Mathematical Physics. 2017;57(4):698-705
pages 698-705 views

Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations

Zlotnik A.

Аннотация

The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier–Stokes equations of a viscous compressible heat-conducting gas.

Computational Mathematics and Mathematical Physics. 2017;57(4):706-725
pages 706-725 views

On relationships between complexity classes of Turing machines

Zakharov V., Kozmidiadi V.

Аннотация

Classes of time and space complexity of Turing machines are defined, and relationships between them are discussed. New relationships between the defined complexity classes are described.

Computational Mathematics and Mathematical Physics. 2017;57(4):726-738
pages 726-738 views

A conjugate subgradient algorithm with adaptive preconditioning for the least absolute shrinkage and selection operator minimization

Mirone A., Paleo P.

Аннотация

This paper describes a new efficient conjugate subgradient algorithm which minimizes a convex function containing a least squares fidelity term and an absolute value regularization term. This method is successfully applied to the inversion of ill-conditioned linear problems, in particular for computed tomography with the dictionary learning method. A comparison with other state-of-art methods shows a significant reduction of the number of iterations, which makes this algorithm appealing for practical use.

Computational Mathematics and Mathematical Physics. 2017;57(4):739-748
pages 739-748 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».