Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 57, № 7 (2017)

Article

Some properties of two-dimensional surjective p-homogeneous maps

Karamzin D., Arutyunov A., Zhukovskiy S.

Аннотация

The properties of real p-homogeneous polynomial maps in R2 are examined. The relation between surjectivity and the existence of a nontrivial zero is investigated. Additionally, the relation between surjectivity and stable surjectivity is studied. Examples are discussed.

Computational Mathematics and Mathematical Physics. 2017;57(7):1081-1089
pages 1081-1089 views

Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations

Zhanlav T., Ulziibayar V., Chuluunbaatar O.

Аннотация

Necessary and sufficient conditions under which two- and three-point iterative methods have the order of convergence р (2 ≤ р ≤ 8) are formulated for the first time. These conditions can be effectively used to prove the convergence of iterative methods. In particular, the order of convergence of some known optimal methods is verified using the proposed sufficient convergence tests. The optimal set of parameters making it possible to increase the order of convergence is found. It is shown that the parameters of the known iterative methods with the optimal order of convergence have the same asymptotic behavior. The simplicity of choosing the parameters of the proposed methods is an advantage over the other known methods.

Computational Mathematics and Mathematical Physics. 2017;57(7):1090-1100
pages 1090-1100 views

Convergence rate estimates for Tikhonov’s scheme as applied to ill-posed nonconvex optimization problems

Kokurin M.

Аннотация

We examine the convergence rate of approximations generated by Tikhonov’s scheme as applied to ill-posed constrained optimization problems with general smooth functionals on a convex closed subset of a Hilbert space. Assuming that the solution satisfies a source condition involving the second derivative of the cost functional and depending on the form of constraints, we establish the convergence rate of the Tikhonov approximations in the cases of exact and approximately specified functionals.

Computational Mathematics and Mathematical Physics. 2017;57(7):1101-1110
pages 1101-1110 views

The geometric series method for constructing exact solutions to nonlinear evolution equations

Bochkarev A., Zemlyanukhin A.

Аннотация

It is proved that, for the majority of integrable evolution equations, the perturbation series constructed based on the exponential solution of the linearized problem is geometric or becomes geometric as a result of changing the variable in the equation or after a transformation of the series. Using this property, a method for constructing exact solutions to a wide class of nonintegrable equations is proposed; this method is based on the requirement for the perturbation series to be geometric and on the imposition of constraints on the values of the coefficients and parameters of the equation under which the sum of the series is the solution to be found. The effectiveness of using the diagonal Padé approximants the minimal order of which is determined by the order of the pole of the solution to the equation is demonstrated.

Computational Mathematics and Mathematical Physics. 2017;57(7):1111-1123
pages 1111-1123 views

How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems

Skvortsov L.

Аннотация

The solution of stiff problems is frequently accompanied by a phenomenon known as order reduction. The reduction in the actual order can be avoided by applying methods with a fairly high stage order, ideally coinciding with the classical order. However, the stage order sometimes fails to be increased; moreover, this is not possible for explicit and diagonally implicit Runge–Kutta methods. An alternative approach is proposed that yields an effect similar to an increase in the stage order. New implicit and stabilized explicit Runge–Kutta methods are constructed that preserve their order when applied to stiff problems.

Computational Mathematics and Mathematical Physics. 2017;57(7):1124-1139
pages 1124-1139 views

Balance-characteristic scheme as applied to the shallow water equations over a rough bottom

Goloviznin V., Isakov V.

Аннотация

The CABARET scheme is used for the numerical solution of the one-dimensional shallow water equations over a rough bottom. The scheme involves conservative and flux variables, whose values at a new time level are calculated by applying the characteristic properties of the shallow water equations. The scheme is verified using a series of test and model problems.

Computational Mathematics and Mathematical Physics. 2017;57(7):1140-1157
pages 1140-1157 views

On approximate solution of the Dixon integral equation and some its generalizations

Barseghyan A.

Аннотация

The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.

Computational Mathematics and Mathematical Physics. 2017;57(7):1158-1166
pages 1158-1166 views

Instantaneous blow-up of classical solutions to the Cauchy problem for the Khokhlov–Zabolotskaya equation

Korpusov M., Mikhailenko S.

Аннотация

The Cauchy problem for a second-order nonlinear equation with mixed derivatives is considered. It is proved that its classical local-in-time solution does not exist. The blow-up of the solution is proved by applying S.I. Pohozaev and E.L. Mitidieri’s nonlinear capacity method.

Computational Mathematics and Mathematical Physics. 2017;57(7):1167-1172
pages 1167-1172 views

Generalization of the optical theorem to multipole sources in the scattering theory of electromagnetic waves

Eremin Y., Sveshnikov A.

Аннотация

Energy relations are used to generalize the Optical Theorem to the case of a local body excited by a multipole source, including in the presence of a half-space. It is shown that the extinction cross section can be represented in an explicit analytical form. This circumstance considerably facilitates the computation of the fluorescence quantum yield or the efficiency of an optical antenna.

Computational Mathematics and Mathematical Physics. 2017;57(7):1173-1180
pages 1173-1180 views

Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders

Blokhin A., Kruglova E., Semisalov B.

Аннотация

A boundary value problem for a quasi-linear equation determining the velocity profile of a flow of a polymer fluid in a pipe formed by two coaxial cylinders is considered. On the basis of methods of approximation without saturation, a computational algorithm of increased accuracy is developed, making it possible to solve the problem in a wide range of parameters, including record-low values of r0, the radius of the inner cylinder.

Computational Mathematics and Mathematical Physics. 2017;57(7):1181-1193
pages 1181-1193 views

Long nonlinear waves in anisotropic cylinders

Kulikovskii A., Chugainova A.

Аннотация

Small-amplitude plane nonlinear waves in anisotropic cylinders are considered in the case of longitudinal and torsional waves having close velocities. Anisotropy corresponding to this condition can take place in specifically plaited ropes and in the case of anisotropy of other nature. The characteristic velocities are found, and simple waves are studied.

Computational Mathematics and Mathematical Physics. 2017;57(7):1194-1200
pages 1194-1200 views

Slow nonisothermal flows: Numerical and asymptotic analysis of the Boltzmann equation

Rogozin O.

Аннотация

Slow flows of a slightly rarefied gas under high thermal stresses are considered. The correct fluid-dynamic description of this class of flows is based on the Kogan–Galkin–Friedlander equations, containing some non-Navier–Stokes terms in the momentum equation. Appropriate boundary conditions are determined from the asymptotic analysis of the Knudsen layer on the basis of the Boltzmann equation. Boundary conditions up to the second order of the Knudsen number are studied. Some two-dimensional examples are examined for the comparative analysis. The fluid-dynamic results are supported by numerical solution of the Boltzmann equation obtained by the Tcheremissine’s projection-interpolation discrete-velocity method extended for nonuniform grids. The competition pattern between the first- and the second-order nonlinear thermal-stress flows has been obtained for the first time.

Computational Mathematics and Mathematical Physics. 2017;57(7):1201-1224
pages 1201-1224 views

A theoretical measure technique for determining 3D symmetric nearly optimal shapes with a given center of mass

Alimorad D. H., Fakharzadeh J. A.

Аннотация

In this paper, a new approach is proposed for designing the nearly-optimal three dimensional symmetric shapes with desired physical center of mass. Herein, the main goal is to find such a shape whose image in (r, θ)-plane is a divided region into a fixed and variable part. The nearly optimal shape is characterized in two stages. Firstly, for each given domain, the nearly optimal surface is determined by changing the problem into a measure-theoretical one, replacing this with an equivalent infinite dimensional linear programming problem and approximating schemes; then, a suitable function that offers the optimal value of the objective function for any admissible given domain is defined. In the second stage, by applying a standard optimization method, the global minimizer surface and its related domain will be obtained whose smoothness is considered by applying outlier detection and smooth fitting methods. Finally, numerical examples are presented and the results are compared to show the advantages of the proposed approach.

Computational Mathematics and Mathematical Physics. 2017;57(7):1225-1240
pages 1225-1240 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».