Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 59, № 1 (2019)

Article

On Error Control in the Numerical Solution of Reaction–Diffusion Equation

Korneev V.

Аннотация

A novel method for deriving a posteriori error bounds for approximate solutions of reaction–diffusion equations is proposed. As a model problem, the problem \( - \Delta u + \sigma u = f\) in \(\Omega \), \({{\left. u \right|}_{{\partial \Omega }}} = 0\) with an arbitrary constant reaction coefficient \(\sigma \geqslant 0\) is studied. For the solutions obtained by the finite element method, bounds, which are called consistent for brevity, are proved. The order of accuracy of these bounds is the same as the order of accuracy of unimprovable a priori bounds. The consistency also assumes that the order of accuracy of such bounds is ensured by test fluxes that satisfy only the corresponding approximation requirements but are not required to satisfy the balance equations. The range of practical applicability of consistent a posteriori error bounds is very wide because the test fluxes appearing in these bounds can be calculated using numerous flux recovery procedures that were intensively developed for error indicators of the residual method. Such recovery procedures often ensure not only the standard approximation orders but also the superconvergency of the recovered fluxes. The advantages of the proposed family of a posteriori bounds are their guaranteed sharpness, no need for satisfying the balance equations in flux recovery procedures, and a much wider range of efficient applicability compared with other a posteriori bounds.

Computational Mathematics and Mathematical Physics. 2019;59(1):1-18
pages 1-18 views

Universal Method of Searching for Equilibria and Stochastic Equilibria in Transportation Networks

Baimurzina D., Gasnikov A., Gasnikova E., Dvurechensky P., Ershov E., Kubentaeva M., Lagunovskaya A.

Аннотация

A universal method of searching for usual and stochastic equilibria in congestion population games is proposed. The Beckmann and stable dynamics models of an equilibrium flow distribution over paths are considered. A search for Nash(–Wardrop) stochastic equilibria leads to entropy-regularized convex optimization problems. Efficient solutions of such problems, more exactly, of their duals are sought by applying a recently proposed universal primal-dual gradient method, which is optimally and adaptively tuned to the smoothness of the problem under study.

Computational Mathematics and Mathematical Physics. 2019;59(1):19-33
pages 19-33 views

Gradient Projection Method for Optimization Problems with a Constraint in the Form of the Intersection of a Smooth Surface and a Convex Closed Set

Chernyaev Y.

Аннотация

The gradient projection method is generalized to the case of nonconvex sets of constraints representing the set-theoretic intersection of a smooth surface with a convex closed set. Necessary optimality conditions are studied, and the convergence of the method is analyzed.

Computational Mathematics and Mathematical Physics. 2019;59(1):34-45
pages 34-45 views

Analytical-Numerical Approach to Describing Time-Periodic Motion of Fronts in Singularly Perturbed Reaction–Advection–Diffusion Models

Volkov V., Lukyanenko D., Nefedov N.

Аннотация

The paper presents an analytical-numerical approach to the study of moving fronts in singularly perturbed reaction–diffusion–advection models. A method for generating a dynamically adapted grid for the efficient numerical solution of problems of this class is proposed. The method is based on a priori information about the motion and properties of the front, obtained by rigorous asymptotic analysis of a singularly perturbed parabolic problem. In particular, the essential parameters taken into account when constructing the grid are estimates of the position of the transition layer, as well as its width and structure. The proposed analytical-numerical approach can significantly save computer resources, reduce the computation time, and increase the stability of the computational process in comparison with the classical approaches. An example demonstrating the main ideas and methods of application of the proposed approach is considered.

Computational Mathematics and Mathematical Physics. 2019;59(1):46-58
pages 46-58 views

Numerical Method for Solving an Inverse Problem for Laplace’s Equation in a Domain with an Unknown Inner Boundary

Gavrilov S.

Аннотация

An inverse problem for Laplace’s equation in a doubly connected two-dimensional domain is considered. Given Dirichlet and Neumann data specified on the known outer boundary of the domain, the task is to determine an unknown inner boundary on which the function takes a constant value. The uniqueness of the solution to this inverse problem is proved. An iterative numerical method for determining the unknown boundary is proposed. Numerical results are presented.

Computational Mathematics and Mathematical Physics. 2019;59(1):59-65
pages 59-65 views

The Green Function of the Dirichlet Problem for the Biharmonic Equation in a Ball

Karachik V.

Аннотация

An elementary solution of the biharmonic equation is defined. By using the properties of the Gegenbauer polynomials, series expansions of this elementary solution and an associated function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere are obtained. Then the Green function of the Dirichlet problem for the biharmonic equation in a unit ball is constructed in the case when the space dimension n is larger than 2. For \(n > 4\), a series expansion of the Green function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere is obtained. This expansion is used to calculate the integral, over a unit ball, of a homogeneous harmonic polynomial multiplied by a positive power of the norm of the independent variable with a kernel being the Green function. The Green function is found in the case \(n = 2\).

Computational Mathematics and Mathematical Physics. 2019;59(1):66-81
pages 66-81 views

Efficiency of Two Approaches to Computing the Flow around an Airfoil with Flaps in the Case of Flow Separation

Bosnyakov S., Vlasenko V., Engulatova M., Matyash S., Mikhailov S., Molev S.

Аннотация

Model equations describing convective transport are used to analyze the approximation errors of an explicit numerical scheme and various implicit schemes with the same approximation of spatial derivatives. It is shown that, under time step constraints determined by the Courant–Friedrichs–Lewy condition, the implicit scheme is inferior in accuracy to the explicit one and, with a further increase in the time step, the accuracy of simulated convective processes degrades substantially. Two methods for implementing the marching procedure in time are considered, namely, a fractional step in the case of an explicit scheme and a dual step in the case of an implicit scheme. It is shown that the fractional step method is efficient only on grids with a scatter of cell sizes of 100–1000. For the numerical solution of problems with no-slip conditions on solid walls (scatter of cell sizes of 104–105), two approaches are proposed: an implicit scheme with a dual step in all cells and an zonal approach, in which a dual step is used in a thin near-wall domain (about 3% of the thickness of a developed turbulent boundary layer), while a fractional step is applied in the rest of the domain. These two approaches are used to compute the flow over an airfoil with flaps. Numerical and experimental data are compared. The accuracy of the numerical results is estimated. The causes of error formation are examined. The domain of efficient application is determined for each of the indicated approaches.

Computational Mathematics and Mathematical Physics. 2019;59(1):82-95
pages 82-95 views

Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonlinearities

A. I. Denisov ., I. V. Denisov .

Аннотация

A singularly perturbed parabolic equation

\({{\varepsilon }^{2}}\left( {{{a}^{2}}\frac{{{{\partial }^{2}}u}}{{\partial {{x}^{2}}}} - \frac{{\partial u}}{{\partial t}}} \right) = F(u,x,t,\varepsilon )\)
is considered in a rectangle with the boundary conditions of the first kind. At the corner points of the rectangle, the monotonicity of the function \(F\) with respect to the variable \(u\) in the interval from the root of the degenerate equation to the boundary value is not required. The asymptotic approximation of the solution is constructed under the assumption that the principal term of the corner part exists. A complete asymptotic expansion of the solution as \(\varepsilon \to 0\) is constructed, and its uniformity in a closed rectangle is proved.

Computational Mathematics and Mathematical Physics. 2019;59(1):96-111
pages 96-111 views

Quantum Effects on Optical Properties of a Pair of Plasmonic Particles Separated by a Subnanometer Gap

Eremin Y., Sveshnikov A.

Аннотация

The discrete source method is used to study the influence exerted by nonlocal screening on the optical properties of a linear cluster of nonspherical plasmonic nanoparticles separated by a subnanometer gap. It is shown that deformations of the particles and a reduction in the interparticle gap size lead to an enhanced nonlocal screening effect. It is found that an increase in both scattered and near field intensities is blocked by the nonlocal effect, and deformations of the particles can be used as an alternative to field intensity enhancement.

Computational Mathematics and Mathematical Physics. 2019;59(1):112-120
pages 112-120 views

Smoothness with Respect to Viscosity of the Solutions of Navier–Stokes-Type Operator Equations

Kachalov V.

Аннотация

An evolutionary Navier–Stokes-type equation is considered. Due to the presence of a bilinear operator term in it, it is possible to introduce a small parameter and expand the solution in it. The main objective of the paper is to find the conditions for the ordinary (not asymptotic) convergence of the series obtained in this case.

Computational Mathematics and Mathematical Physics. 2019;59(1):121-127
pages 121-127 views

Comparing the Spatial Structure of Molecules by Minimizing a Comparison Function

Laneev E., Chernikova N.

Аннотация

A method for the quantitative comparison of the spatial geometric structure of two molecules is proposed. It is based on the minimization of a comparison function using the rotation of molecules when their centers of mass are brought into coincidence. The minimizing angles are found using the Rosenbrock method.

Computational Mathematics and Mathematical Physics. 2019;59(1):128-135
pages 128-135 views

Simulating Flows of Viscous Incompressible Fluid on Graphics Processors Using the Splitting Scheme and Multigrid Method

Volkov K., Emel’yanov V., Karpenko A., Teterina I.

Аннотация

The use of general purpose graphics processors for the numerical solution of problems in dynamics of viscous incompressible fluid is discussed. Specific features of the parallel implementation of the splitting scheme (projection method) are considered. The system of difference equations produced by the discretization of Poisson’s equations for pressure is solved using the multigrid method. A number of benchmark problems are solved on graphics processors, and approaches to the optimization of program code by using different memory types are discussed. The speedup of computations on graphics processors is compared with the computations on the central processor using grids with different resolution and different decompositions of the initial data into blocks.

Computational Mathematics and Mathematical Physics. 2019;59(1):136-149
pages 136-149 views

Compacton Solutions of the Korteweg–de Vries Equation with Constrained Nonlinear Dispersion

Popov S.

Аннотация

The numerical solution of initial value problems is used to obtain compacton and kovaton solutions of K(m, g n) equations generalizing the Korteweg–de Vries K(u2, u1) and Rosenau–Hyman K(u m, u n) equations to more general dependences of the nonlinear and dispersion terms on the solution u. The functions f(u) and g(u) determining their form can be linear or can have the form of a smoothed step. It is shown that peakocompacton and peakosoliton solutions exist depending on the form of the nonlinearity and dispersion. They represent transient forms combining the properties of solitons, compactons, and peakons. It is shown that these solutions can exist against an inhomogeneous and nonstationary background.

Computational Mathematics and Mathematical Physics. 2019;59(1):150-159
pages 150-159 views

Spherical Shell of the Boundary of a Compact Set with a Minimum Cross-Sectional Area Formed by a Two-Dimensional Plane

Dudov S., Osiptsev M.

Аннотация

For a given compact set, the finite-dimensional problem of constructing a spherical shell of its boundary such that the shell cross section formed by a two-dimensional plane passing through its center has a minimum area is considered. It is proved that the problem has a solution, and a criterion is found under which the solution set is bounded. The objective function of the given optimization problem is shown to be convex, and a formula for its subdifferential is derived. A criterion for solving the problem is obtained, which is used to establish some properties of the solution and to find conditions for solution uniqueness. In the two-dimensional case when the compact set is a convex body, it is proved that the solution sets of the given problem and the asphericity problem for this body intersect at a single point that is the solution of the problem of finding a least-thickness spherical shell of the boundary of the given body.

Computational Mathematics and Mathematical Physics. 2019;59(1):160-173
pages 160-173 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».