How to avoid accuracy and order reduction in Runge–Kutta methods as applied to stiff problems
- Authors: Skvortsov L.M.1
-
Affiliations:
- Bauman State Technical University
- Issue: Vol 57, No 7 (2017)
- Pages: 1124-1139
- Section: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/179266
- DOI: https://doi.org/10.1134/S0965542517070119
- ID: 179266
Cite item
Abstract
The solution of stiff problems is frequently accompanied by a phenomenon known as order reduction. The reduction in the actual order can be avoided by applying methods with a fairly high stage order, ideally coinciding with the classical order. However, the stage order sometimes fails to be increased; moreover, this is not possible for explicit and diagonally implicit Runge–Kutta methods. An alternative approach is proposed that yields an effect similar to an increase in the stage order. New implicit and stabilized explicit Runge–Kutta methods are constructed that preserve their order when applied to stiff problems.
Keywords
About the authors
L. M. Skvortsov
Bauman State Technical University
Author for correspondence.
Email: lm_skvo@rambler.ru
Russian Federation, Moscow, 105005
Supplementary files
