Polynomial-Time Solvability of the One-Dimensional Case of an NP-Hard Clustering Problem


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the problem of partitioning a finite set of points in Euclidean space into clusters so as to minimize the sum, over all clusters, of the intracluster sums of the squared distances between cluster elements and their centers. The centers of some of the clusters are given as an input, while the centers of the others are determined as centroids (geometric centers). It is known that, in the general case, this problem is strongly NP-hard. We prove constructively that the one-dimensional case of this problem is solvable in polynomial time.

About the authors

A. V. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: kelm@math.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

V. I. Khandeev

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: khandeev@math.nsc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.