Modified Kantorovich theorem and asymptotic approximations of solutions to singularly perturbed systems of ordinary differential equations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The functional equation f(x,ε) = 0 containing a small parameter ε and admitting regular and singular degeneracy as ε → 0 is considered. By the methods of small parameter, a function xn0(ε) satisfying this equation within a residual error of O(εn+1) is found. A modified Newton’s sequence starting from the element xn0(ε) is constructed. The existence of the limit of Newton’s sequence is based on the NK theorem proven in this work (a new variant of the proof of the Kantorovich theorem substantiating the convergence of Newton’s iterative sequence). The deviation of the limit of Newton’s sequence from the initial approximation xn0(ε) has the order of O(εn+1), which proves the asymptotic character of the approximation xn0(ε). The method proposed is implemented in constructing an asymptotic approximation of a system of ordinary differential equations on a finite or infinite time interval with a small parameter multiplying the derivatives, but it can be applied to a wider class of functional equations with a small parameters.

Авторлар туралы

A. Belolipetskii

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”

Хат алмасуға жауапты Автор.
Email: abelolipet@mail.ru
Ресей, Moscow, 119333

A. Ter-Krikorov

Moscow Institute of Physics and Technology

Email: abelolipet@mail.ru
Ресей, Dolgoprudnyi, Moscow oblast, 141700

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016