Weighted cubic and biharmonic splines


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

Авторлар туралы

Boris Kvasov

Department of Mathematical Modeling, Institute of Computational Technologies

Email: taewan@snu.ac.kr
Ресей, Novosibirsk, 630090

Tae-Wan Kim

Department of Naval Architecture and Ocean Engineering, and Research Institute of Marine Systems Engineering

Хат алмасуға жауапты Автор.
Email: taewan@snu.ac.kr
Корей Республикасы, Seoul, 151–744

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017