Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 57, № 1 (2017)

Article

Extragradient method for solving an optimal control problem with implicitly specified boundary conditions

Antipin A., Artem’eva L., Vasil’ev F.

Аннотация

An optimal control problem formulated as a system of linear ordinary differential equations with boundary conditions implicitly specified as a solution to a finite-dimensional minimization problem is considered. An extragradient method for solving this problem is proposed, and its convergence is studied.

Computational Mathematics and Mathematical Physics. 2017;57(1):64-70
pages 64-70 views

A model of the direct interaction of elements of a tightly coupled system

Shakhnov I.

Аннотация

A maximin mathematical model describing the process of changing the quality indicators of products manufactured by facilities of a complex production system interconnected by multiple feedbacks is considered. Necessary and sufficient conditions for the monotone growth of these indicators are found. For the proposed new technologies utilized on some of these facilities, consistency conditions with the technologies used on other facilities are determined. For finding the optimal control of this process, it is recommended to use parallel computations.

Computational Mathematics and Mathematical Physics. 2017;57(1):94-105
pages 94-105 views

Improving an estimate of the convergence rate of the seidel method by selecting the optimal order of equations in the system of linear algebraic equations

Borzykh A.

Аннотация

The Seidel method for solving a system of linear algebraic equations and an estimate of its convergence rate are considered. It is proposed to change the order of equations. It is shown that the method described in Faddeevs’ book Computational Methods of Linear Algebra can deteriorate the convergence rate estimate rather than improve it. An algorithm for establishing the optimal order of equations is proposed, and its validity is proved. It is shown that the computational complexity of the reordering is 2n2 additions and (12)n2 divisions. Numerical results for random matrices of order 100 are presented that confirm the proposed improvement.

Computational Mathematics and Mathematical Physics. 2017;57(1):1-6
pages 1-6 views

Cubic spline interpolation of functions with high gradients in boundary layers

Blatov I., Zadorin A., Kitaeva E.

Аннотация

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.

Computational Mathematics and Mathematical Physics. 2017;57(1):7-25
pages 7-25 views

Weighted cubic and biharmonic splines

Kvasov B., Kim T.

Аннотация

In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

Computational Mathematics and Mathematical Physics. 2017;57(1):26-44
pages 26-44 views

Universal procedure for constructing a Pareto set

Rabinovich Y.

Аннотация

A procedure for Pareto set construction that admits the use of a broad class of numerical methods for scalar optimization is considered.

Computational Mathematics and Mathematical Physics. 2017;57(1):45-63
pages 45-63 views

Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems

Kuterin F., Sumin M.

Аннотация

A convex programming problem in a Hilbert space with an operator equality constraint and a finite number of functional inequality constraints is considered. All constraints involve parameters. The close relation of the instability of this problem and, hence, the instability of the classical Lagrange principle for it to its regularity properties and the subdifferentiability of the value function in the problem is discussed. An iterative nondifferential Lagrange principle with a stopping rule is proved for the indicated problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimization problems is discussed. The capabilities of this principle are illustrated by numerically solving the classical ill-posed problem of finding the normal solution of a Fredholm integral equation of the first kind.

Computational Mathematics and Mathematical Physics. 2017;57(1):71-82
pages 71-82 views

Measurement of returns to scale in radial DEA models

Krivonozhko V., Lychev A., Førsund F.

Аннотация

A general approach is proposed in order to measure returns to scale and scale elasticity at projections points in the radial data envelopment analysis (DEA) models. In the first stage, a relative interior point belonging to the optimal face is found using a special, elaborated method. In previous work it was proved that any relative interior point of a face has the same returns to scale as any other interior point of this face. In the second stage, we propose to determine the returns to scale at the relative interior point found in the first stage.

Computational Mathematics and Mathematical Physics. 2017;57(1):83-93
pages 83-93 views

Two-frequency self-oscillations in a FitzHugh–Nagumo neural network

Glyzin S., Kolesov A., Rozov N.

Аннотация

A new mathematical model of a one-dimensional array of FitzHugh–Nagumo neurons with resistive-inductive coupling between neighboring elements is proposed. The model relies on a chain of diffusively coupled three-dimensional systems of ordinary differential equations. It is shown that any finite number of coexisting stable invariant two-dimensional tori can be obtained in this chain by suitably increasing the number of its elements.

Computational Mathematics and Mathematical Physics. 2017;57(1):106-121
pages 106-121 views

Numerical diagnostics of solution blowup in differential equations

Belov A.

Аннотация

New simple and robust methods have been proposed for detecting poles, logarithmic poles, and mixed-type singularities in systems of ordinary differential equations. The methods produce characteristics of these singularities with a posteriori asymptotically precise error estimates. This approach is applicable to an arbitrary parametrization of integral curves, including the arc length parametrization, which is optimal for stiff and ill-conditioned problems. The method can be used to detect solution blowup for a broad class of important nonlinear partial differential equations, since they can be reduced to huge-order systems of ordinary differential equations by applying the method of lines. The method is superior in robustness and simplicity to previously known methods.

Computational Mathematics and Mathematical Physics. 2017;57(1):122-132
pages 122-132 views

On the convergence of difference schemes for fractional differential equations with Robin boundary conditions

Bazzaev A., Shkhanukov-Lafishev M.

Аннотация

Locally one-dimensional difference schemes for partial differential equations with fractional order derivatives with respect to time and space in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.

Computational Mathematics and Mathematical Physics. 2017;57(1):133-144
pages 133-144 views

Solving boundary value problems of mathematical physics using radial basis function networks

Gorbachenko V., Zhukov M.

Аннотация

A neural network method for solving boundary value problems of mathematical physics is developed. In particular, based on the trust region method, a method for learning radial basis function networks is proposed that significantly reduces the time needed for tuning their parameters. A method for solving coefficient inverse problems that does not require the construction and solution of adjoint problems is proposed.

Computational Mathematics and Mathematical Physics. 2017;57(1):145-155
pages 145-155 views

Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum

Nazarov S.

Аннотация

The spectra of open angular waveguides obtained by thickening or thinning the links of a thin square lattice of quantum waveguides (the Dirichlet problem for the Helmholtz equation) are investigated. Asymptotics of spectral bands and spectral gaps (i.e., zones of wave transmission and wave stopping, respectively) for waveguides with variously shaped periodicity cells are found. It is shown that there exist eigenfunctions of two types: localized around nodes of a waveguide and on its links. Points of the discrete spectrum of a perturbed lattice with eigenfunctions concentrated about corners of the waveguide are found.

Computational Mathematics and Mathematical Physics. 2017;57(1):156-174
pages 156-174 views

Matrix of moments of the Legendre polynomials and its application to problems of electrostatics

Savchenko A.

Аннотация

In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.

Computational Mathematics and Mathematical Physics. 2017;57(1):175-187
pages 175-187 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».