


Том 57, № 1 (2017)
- Год: 2017
- Статей: 14
- URL: https://journal-vniispk.ru/0965-5425/issue/view/11115
Article
Extragradient method for solving an optimal control problem with implicitly specified boundary conditions
Аннотация
An optimal control problem formulated as a system of linear ordinary differential equations with boundary conditions implicitly specified as a solution to a finite-dimensional minimization problem is considered. An extragradient method for solving this problem is proposed, and its convergence is studied.



A model of the direct interaction of elements of a tightly coupled system
Аннотация
A maximin mathematical model describing the process of changing the quality indicators of products manufactured by facilities of a complex production system interconnected by multiple feedbacks is considered. Necessary and sufficient conditions for the monotone growth of these indicators are found. For the proposed new technologies utilized on some of these facilities, consistency conditions with the technologies used on other facilities are determined. For finding the optimal control of this process, it is recommended to use parallel computations.



Improving an estimate of the convergence rate of the seidel method by selecting the optimal order of equations in the system of linear algebraic equations
Аннотация
The Seidel method for solving a system of linear algebraic equations and an estimate of its convergence rate are considered. It is proposed to change the order of equations. It is shown that the method described in Faddeevs’ book Computational Methods of Linear Algebra can deteriorate the convergence rate estimate rather than improve it. An algorithm for establishing the optimal order of equations is proposed, and its validity is proved. It is shown that the computational complexity of the reordering is 2n2 additions and (12)n2 divisions. Numerical results for random matrices of order 100 are presented that confirm the proposed improvement.



Cubic spline interpolation of functions with high gradients in boundary layers
Аннотация
The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.



Weighted cubic and biharmonic splines
Аннотация
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.






Stable iterative Lagrange principle in convex programming as a tool for solving unstable problems
Аннотация
A convex programming problem in a Hilbert space with an operator equality constraint and a finite number of functional inequality constraints is considered. All constraints involve parameters. The close relation of the instability of this problem and, hence, the instability of the classical Lagrange principle for it to its regularity properties and the subdifferentiability of the value function in the problem is discussed. An iterative nondifferential Lagrange principle with a stopping rule is proved for the indicated problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimization problems is discussed. The capabilities of this principle are illustrated by numerically solving the classical ill-posed problem of finding the normal solution of a Fredholm integral equation of the first kind.



Measurement of returns to scale in radial DEA models
Аннотация
A general approach is proposed in order to measure returns to scale and scale elasticity at projections points in the radial data envelopment analysis (DEA) models. In the first stage, a relative interior point belonging to the optimal face is found using a special, elaborated method. In previous work it was proved that any relative interior point of a face has the same returns to scale as any other interior point of this face. In the second stage, we propose to determine the returns to scale at the relative interior point found in the first stage.



Two-frequency self-oscillations in a FitzHugh–Nagumo neural network
Аннотация
A new mathematical model of a one-dimensional array of FitzHugh–Nagumo neurons with resistive-inductive coupling between neighboring elements is proposed. The model relies on a chain of diffusively coupled three-dimensional systems of ordinary differential equations. It is shown that any finite number of coexisting stable invariant two-dimensional tori can be obtained in this chain by suitably increasing the number of its elements.



Numerical diagnostics of solution blowup in differential equations
Аннотация
New simple and robust methods have been proposed for detecting poles, logarithmic poles, and mixed-type singularities in systems of ordinary differential equations. The methods produce characteristics of these singularities with a posteriori asymptotically precise error estimates. This approach is applicable to an arbitrary parametrization of integral curves, including the arc length parametrization, which is optimal for stiff and ill-conditioned problems. The method can be used to detect solution blowup for a broad class of important nonlinear partial differential equations, since they can be reduced to huge-order systems of ordinary differential equations by applying the method of lines. The method is superior in robustness and simplicity to previously known methods.



On the convergence of difference schemes for fractional differential equations with Robin boundary conditions
Аннотация
Locally one-dimensional difference schemes for partial differential equations with fractional order derivatives with respect to time and space in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.



Solving boundary value problems of mathematical physics using radial basis function networks
Аннотация
A neural network method for solving boundary value problems of mathematical physics is developed. In particular, based on the trust region method, a method for learning radial basis function networks is proposed that significantly reduces the time needed for tuning their parameters. A method for solving coefficient inverse problems that does not require the construction and solution of adjoint problems is proposed.



Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum
Аннотация
The spectra of open angular waveguides obtained by thickening or thinning the links of a thin square lattice of quantum waveguides (the Dirichlet problem for the Helmholtz equation) are investigated. Asymptotics of spectral bands and spectral gaps (i.e., zones of wave transmission and wave stopping, respectively) for waveguides with variously shaped periodicity cells are found. It is shown that there exist eigenfunctions of two types: localized around nodes of a waveguide and on its links. Points of the discrete spectrum of a perturbed lattice with eigenfunctions concentrated about corners of the waveguide are found.



Matrix of moments of the Legendre polynomials and its application to problems of electrostatics
Аннотация
In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.


