On the Parameter-Uniform Convergence of Exponential Spline Interpolation in the Presence of a Boundary Layer
- 作者: Blatov I.A.1, Zadorin A.I.2, Kitaeva E.V.3
-
隶属关系:
- Povolzhskiy State University of Telecommunications and Informatics
- Sobolev Institute of Mathematics, Omsk Branch, Siberian Branch
- Samara State Aerospace University
- 期: 卷 58, 编号 3 (2018)
- 页面: 348-363
- 栏目: Article
- URL: https://journal-vniispk.ru/0965-5425/article/view/180086
- DOI: https://doi.org/10.1134/S0965542518030028
- ID: 180086
如何引用文章
详细
The paper is concerned with the problem of generalized spline interpolation of functions having large-gradient regions. Splines of the class C2, represented on each interval of the grid by the sum of a second-degree polynomial and a boundary layer function, are considered. The existence and uniqueness of the interpolation L-spline are proven, and asymptotically exact two-sided error estimates for the class of functions with an exponential boundary layer are obtained. It is established that the cubic and parabolic interpolation splines are limiting for the solution of the given problem. The results of numerical experiments are presented.
作者简介
I. Blatov
Povolzhskiy State University of Telecommunications and Informatics
编辑信件的主要联系方式.
Email: blatow@mail.ru
俄罗斯联邦, Samara, 443010
A. Zadorin
Sobolev Institute of Mathematics, Omsk Branch, Siberian Branch
Email: blatow@mail.ru
俄罗斯联邦, Omsk, 644043
E. Kitaeva
Samara State Aerospace University
Email: blatow@mail.ru
俄罗斯联邦, Samara, 443086
补充文件
