Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 57, № 9 (2017)

Article

Membrane technology in bioconversion of lignocellulose to motor fuel components

Teplyakov V., Shalygin M., Kozlova A., Chistyakov A., Tsodikov M., Netrusov A.

Аннотация

The use of lignocellulosic biomass is one of the promising technologies for the production of energy carriers (bioalcohols, biosyngas) and valuable chemicals. Lignocellulosic biofuels may be thought of as a material capable of substantially replacing oil to provide an efficient consumption of natural energy resources and an improvement of the environment. In the “bioreactor–membrane separator–catalytic reactor (converter)" circuit, all stages are considered to be key: (1) the pretreatment of lignocellulose and the development of fermentation, particularly the cultivation of novel strains of bacteria; (2) the design of energyefficient vapor/gas-phase membrane systems for (a) concentrating bioalcohols and (b) controlling the biosyngas composition; and (3) the development of catalyst systems for the conversion of bioalcohols to motor fuel components. The following sequential tasks are discussed in this brief review: (i) basic approaches to the pretreatment of lignocellulosic biomass aimed at preparing it for fermentation and enzymatic processing of lignocellulose, particularly the cultivation of novel strains of bacteria and their communities, to produce bioalcohols— ethanol and butanol—and thermochemical methods of lignocellulose conversion to products in the form of complex mixtures; (ii) the development of energy-efficient membrane concentrating of bioalcohols using hydrophilic and/or organophilic polymer membranes and the control of the composition of synthesis gas in the form of a multicomponent gas mixture using commercial gas-separation membranes; and (iii) the development of catalyst systems exhibiting high selectivity in the ethanol conversion to alkane and aromatic hydrocarbons (high-quality additives to motor fuels) and valuable olefins, particularly ethylene, propylene, and linear alpha-olefins up to C10.

Petroleum Chemistry. 2017;57(9):747-762
pages 747-762 views

Ion exchange membranes based on silica and sulfonated copolymers of styrene with allyl glycidyl ether

Lebedeva O., Malahova E., Sipkina E., Chesnokova A., Kuzmin A., Maksimenko S., Pozhidaev Y., Rzhechitskiy A., Raskulova T., Ivanov N.

Аннотация

Proton-conducting membranes have been obtained by sol–gel synthesis involving tetraethyl orthosilicate and sulfonated suspension copolymers of styrene with allyl glycidyl ether. The membranes are gels consisting of a polymer matrix, in which silica particles are uniformly distributed. The synthesized membranes are characterized by the proton conductivity of up to 4.21 × 10–2 S/cm at 343 K and 75% humidity, an ion exchange capacity of 3.5 meq/g, a proton-transfer activation energy of 25.2 ± 2.6 kJ/mol, thermal stability of up to 130°C, and mechanical strength (tensile modulus of elasticity, 322 MPa).

Petroleum Chemistry. 2017;57(9):763-769
pages 763-769 views

Effect of temperature on gas transport properties of supported ionic liquid membranes

Akhmetshina A., Yanbikov N., Petukhov A., Vorotyntsev I.

Аннотация

The separations of the CO2/N2 and CO2/CH4 gas pairs using supported ionic liquid membranes (SILMs) with the immobilized ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (bmim[BF4]) and 1-butyl-3-methylimidazolium bis(2-ethylhexyl)sulfosuccinate (bmim[doc]) have been compared. The temperature dependences of the gas permeability, diffusion, and solubility coefficients have been obtained experimentally, and the temperature dependence of selectivity has been calculated. It has been found that the selectivity of membranes based on bmim[BF4] slightly decreases with temperature and the separation selectivity of CO2/N2 and CO2/CH4 systems on the membranes impregnated with bmim[doc] is almost independent of temperature.

Petroleum Chemistry. 2017;57(9):770-778
pages 770-778 views

Electroconvection in systems with heterogeneous ion-exchange membranes

Zabolotsky V., Novak L., Kovalenko A., Nikonenko V., Urtenov M., Lebedev K., But A.

Аннотация

The features of electroconvection in a smooth rectangular desalting channel of an electrodialysis apparatus with heterogeneous ion-exchange membranes have been theoretically investigated. A 2D model of electroconvection for a binary electrolyte has been constructed for overlimiting current regimes in the form of the Nernst–Planck–Poisson and Navier–Stokes equations. The influence of surface morphology of the heterogeneous ion-exchange membranes on vortex structures and on mass transfer of salt ions has been studied. The current–voltage characteristic has been calculated for the heterogeneous ion-exchange membranes. It has been shown that mass transfer in the membrane channel can be enhanced by improving the surface morphology of the heterogeneous ion-exchange membranes. The strong-base homogeneous membrane AMX and the modified heterogeneous membrane AMH-M have been studied using the rotating membrane disk technique.

Petroleum Chemistry. 2017;57(9):779-789
pages 779-789 views

Variation of polymer-template pore geometry as a means of controlling the magnetic properties of metallic nanostructures

Kadyrzhanov K., Kozlovskiy A., Kanyukov E., Mashentseva A., Zdorovets M., Shumskaya E.

Аннотация

The influence of pore geometry of polyethylene terephthalate track-etched membranes on the structural, conducting, and magnetic characteristics of cobalt nanotubes (NTs) synthesized by electrochemical deposition has been studied. It has been found that there are significant differences in average size of crystallites and texture coefficients between various forms of cobalt nanotubes. Thus, the α-Co hexagonal closepacked phase dominates in Co-NT samples with cylindrical and hourglass pore shapes and the β-Co facecentered cubic phase prevails in conical Co nanotubes. Measurements of the magnetic properties have shown that the coercivity of cylindrical Co nanotubes is almost two times that of the conical forms because of crystal anisotropy of nanotube-forming cobalt crystallites.

Petroleum Chemistry. 2017;57(9):790-795
pages 790-795 views

Sequential micro- and ultrafiltration in the process of production of cottage cheese

Timkin V., Gorbunova Y.

Аннотация

The present work is devoted to solving the tasks aimed at the study of pressure-driven membrane processes used in the manufacture of ultrafiltration cottage cheese via microfiltration followed by ultrafiltration using membranes of domestic manufacture. As a result of this study, the technological parameters of baromembrane processes (speed of solution over the membrane, operating pressure, and temperature) providing the maximum productivity and selectivity of the microbiological clearance of skim milk by microfiltration and the ultrafiltration concentration of curd have been determined. The possibility of affecting the characteristics (permeability and selectivity) of the ultrafiltration process by approaching the isoelectric point of the protein fraction due to the change in the active acidity of the curd under concentration has been considered. The applicability of the microfiltration process in cottage cheese making has been confirmed, since it leads to enhancement of the performance of ultrafiltration membranes and increases the shelf life of the resulting product.

Petroleum Chemistry. 2017;57(9):796-803
pages 796-803 views

Comparison of membrane and conventional reactors under dry methane reforming conditions

Alexandrov A., Gavrilova N., Kislov V., Skudin V.

Аннотация

A flow-through catalytic membrane reactor has been experimentally compared with a conventional fixed bed catalytic reactor by matching the specific rate constants in the reaction of dry reforming of methane. Crushed membrane and powdered catalysts with tungsten carbide as the active ingredient have been used as a reference in the conventional reactor. An increase in the reaction rate in the membrane reactor has been explained in terms of emerging Knudsen transport and also by the features of the membrane catalyst, which make it possible to force transport in the pore space of the catalytically active substance. It has been assumed that the “rarefaction” of the gases in the catalyst pores can be accompanied by a change in the equilibrium and a shift in the process toward the products of the direct reaction.

Petroleum Chemistry. 2017;57(9):804-812
pages 804-812 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».