Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsus under drought stress


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study aimed to investigate physiological and protein expression alterations of mycorrhizal Pinus massoniana Lamb. inoculated with Lactarius insulsus in response to drought stress. The P. massoniana seedlings were inoculated with L. insulsus (Li group) and ectomycorrhized fungal-free filtrate (control, CK group), respectively. After two and a half years, all the plants were exposed to a simulate drought condition without water for 21 days. The soil relative water content (SRWC), wilting degree (WD) and wilting rate (WR) of the plants were measured and root proteome was analyzed based on two-dimensional gel electrophoresis (2-DE), respectively at four time points as 0, 7, 14 and 21 days during the whole drought period. Finally, the electrospray ionization mass spectrometry (ESI-MS) was used to identify the differentially expressed proteins (DEPs) between Li and CK groups. The SRWC was higher, while WR and WD were lower in Li group, compared with that in CK group. Based on 2-DE and ESI-MS, 22 DEPs were identified between Li and CK groups during drought stress. Among them, four proteins had the annotated information in relevant databases, including 1,4-benzoquinone reductase, PSCHI4, ribosomal protein L16 (RPL16) and AINTEGUMENTA-like (AIL) protein. Mycorrhizal P. massoniana inoculated with L. insulsus achieved an enhanced drought resistance as compared to the non-mycorrhizal, and the altered protein expressions such as 1,4-benzoquinone reductase, PSCHI4, RPL16, and AIL might contribute to the improved resistance under drought stress.

作者简介

C. Xu

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry; Jiangsu Polytechnic College of Agriculture and Forestry

Email: wuxq123@hotmail.com
中国, Nanjing; Jurong

X. Wu

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry

编辑信件的主要联系方式.
Email: wuxq123@hotmail.com
中国, Nanjing

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016