Structure and properties of the crystals of solid electrolytes (ZrO2)1 – x – y(Sc2O3)x(Y2O3)y (x = 0.035–0.11, y = 0–0.02) prepared by selective melt crystallization
- Authors: Borik M.A.1, Bredikhin S.I.2, Bublik V.T.3, Kulebyakin A.V.1, Kuritsyna I.E.2, Lomonova E.E.1, Milovich F.O.3, Myzina V.A.1, Osiko V.V.1, Seryakov S.V.3, Tabachkova N.Y.3
-
Affiliations:
- Prokhorov Institute of General Physics
- Institute of Solid State Physics
- National University of Science and Technology MISiS
- Issue: Vol 52, No 7 (2016)
- Pages: 655-661
- Section: Article
- URL: https://journal-vniispk.ru/1023-1935/article/view/187983
- DOI: https://doi.org/10.1134/S1023193516070041
- ID: 187983
Cite item
Abstract
Single crystals of solid electrolytes of the (ZrO2)1–x–y(Sc2O3)x(Y2O3)y (x = 0.035–0.11, y = 0‒0.02) system were grown by selective melt crystallization. Stabilization of ZrO2 only with Sc2O3 in the concentration range 9–11 mol % Sc2O3 did not afford crystals with a cubic structure, and only the introduction of additional Y2O3 stabilizers afforded uniform transparent single-phase cubic crystals. All the crystals under study had high microhardness, but low crack resistance. The ion conductivity of crystals with 6 and 9 mol % Sc2O3 (6ScZr and 9ScZr, respectively) is comparable to that of 8 mol % Y2O3-stabilized ZrO2 (8YSZ), which is the most suitable electrolyte in the ZrO2–Y2O3 binary system. The specific conductivity of crystals containing 8–10 mol % Sc2O3 and 1–2 mol % Y2O3 exceeds that of other materials including 8YSZ. The maximum conductivity in the given range of compositions is inherent in the cubic phase with 10 mol % Sc2O3 and 1 mol % Y2O3 (10Sc1YZr).
About the authors
M. A. Borik
Prokhorov Institute of General Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Vavilova 38, Moscow
S. I. Bredikhin
Institute of Solid State Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Akademika Osip’yana 2, Chernogolovka, Moscow oblast
V. T. Bublik
National University of Science and Technology MISiS
Email: ntabachkova@gmail.com
Russian Federation, Leninskii pr. 4, Moscow
A. V. Kulebyakin
Prokhorov Institute of General Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Vavilova 38, Moscow
I. E. Kuritsyna
Institute of Solid State Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Akademika Osip’yana 2, Chernogolovka, Moscow oblast
E. E. Lomonova
Prokhorov Institute of General Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Vavilova 38, Moscow
F. O. Milovich
National University of Science and Technology MISiS
Email: ntabachkova@gmail.com
Russian Federation, Leninskii pr. 4, Moscow
V. A. Myzina
Prokhorov Institute of General Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Vavilova 38, Moscow
V. V. Osiko
Prokhorov Institute of General Physics
Email: ntabachkova@gmail.com
Russian Federation, ul. Vavilova 38, Moscow
S. V. Seryakov
National University of Science and Technology MISiS
Email: ntabachkova@gmail.com
Russian Federation, Leninskii pr. 4, Moscow
N. Yu. Tabachkova
National University of Science and Technology MISiS
Author for correspondence.
Email: ntabachkova@gmail.com
Russian Federation, Leninskii pr. 4, Moscow
Supplementary files
