Effect of Small Angles of Attack on Turbulence Generation in Supersonic Boundary Layers on Swept Wings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the new (for Mach numbers М = 3 and 3.5) and generalizing (for Mach numbers from 2 to 4) results of experimental investigations on the effect of small angles of attack on laminar-turbulent transition in the supersonic boundary layer on a swept wing with the leading-edge slip angle of 72°. The angle-of-attack variation has a strong effect on the transition Reynolds number. The transition Reynolds number decreases with increase in the Mach number. The measurements were carried out by means of a constant-temperature hot-wire anemometer using the proven procedure of determining the transition location. The eN method is used for the first time for numerically estimating the transition Reynolds numbers in the supersonic boundary layer on a swept wing with the leading-edge slip angle of 72°. The growth of the amplitudes of the steady and unsteady modes of the boundary layer crossflow are calculated in accordance with the linear stability theory, within the framework of the Lees–Lin system of equations. The numerical results indicate that, in accordance with the experimental results, laminar-turbulent transition in the boundary layer on the model swept wing is governed by the growth of stationary modes of the crossflow instability.

About the authors

A. D. Kosinov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: semion@itam.nsc.ru
Novosibirsk, Russia

V. L. Kocharin

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: semion@itam.nsc.ru
Novosibirsk, Russia

A. V. Liverko

Central Aerohydrodynamic Institute (TsAGI),

Email: info@tsagi.ru
Zhukovsky, Russia

A. N. Semionov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: semion@itam.nsc.ru
Novosibirsk, Russia

N. V. Semionov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: semion@itam.nsc.ru
Novosibirsk, Russia

B. V. Smorodsky

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: semion@itam.nsc.ru
Novosibirsk, Russia

S. N. Tolkachev

Central Aerohydrodynamic Institute (TsAGI),

Email: info@tsagi.ru
Zhukovsky, Russia

A. A. Yatskikh

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: semion@itam.nsc.ru
Novosibirsk, Russia

References

  1. Устинов М.В. Ламинарно-турбулентный переход в пограничном слое (обзор) часть 1. Основные виды ламинарно-турбулентного перехода на стреловидном крыле // Уч. зап. ЦАГИ. 2013. Т. 44. № 1. С. 1–42.
  2. Reed H.L., Saric W.S. Stability of three-dimensional boundary layers// Ann. Rev. FluidMech. 1989. V. 21. P. 235–284.
  3. Бойко А.В., Грек Г.Р., Довгаль А.В., Козлов В.В. Возникновение турбулентности в пристенных течениях. Новосибирск: Наука. Сиб. отделение, 1999. 328 с.
  4. Deyhle H., Bippes H. Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions // J. Fluid Mech. 1996. V. 316. P. 73–113.
  5. Ермолаев Ю.Г., Косинов А.Д., Кочарин В.Л., Семенов А.Н., Семенов Н.В., Шипуль С.А., Яцких А.А. Экспериментальное исследование влияния внешних возмущений на положение ламинарно-турбулентного перехода на стреловидных крыльях при М = 2 // Теплофизика и аэромеханика. 2021. Т. 28. № 3. С. 343–350.
  6. Cattafesta L.N. III, Iyer V., Masad J.A., King R.A., Dagenhart J.R. Three-dimensional boundary-layer transition on a swept wing at Mach 3.5 // AIAA J. 1995. V. 33. № 11. P. 2032–2037.
  7. Бражко В.Н., Ваганов А.В., Дудин Г.Н., Ковалева Н.А., Липатов И.И., Скуратов А.С. Экспериментальное исследование особенностей аэродинамического нагревания треугольного крыла при больших числах Маха // Труды МФТИ. 2009. Т. 1. № 3. С. 57–66.
  8. Ваганов А.В., Ермолаев Ю.Г., Косинов А.Д., Семенов Н.В., Шалаев В.И. Экспериментальное исследование структуры течения и перехода в пограничном слое треугольного крыла с затупленными передними кромками при числах Маха 2, 2,5 и 4 // Труды МФТИ. 2013. Т. 5. № 3. С. 164–173.
  9. Yoshida S., Nakano K., Shiozava N. An Experimental and Numerical Study on the Compressible laminar flow control // Special publication of national aerospace laboratory SP-31. 1996. P. 81–90.
  10. Sugiura H., Yoshida K., Tokugawa N., Takagi S., Nishizawa A. Transition Measurements on the Natural Laminar Flow Wing at Mach 2 // J. Aircraft. 2002. V. 39. № 6. P. 996–1002.
  11. Semionov N.V., Yermolaev Yu.G., Kocharin V.L., Kosinov A.D., Semenov A.N., Smorodsky B.V., Yatskikh A.A. An effect of small angle of attack on disturbances evolution in swept wing boundary layer at Mach number M = 2 // AIP Conf. Proc. 2018. V. 2027. № 1. P. 030156. https://doi.org/10.1063/1.5065250
  12. Kosinov A.D., Semionov N.V., Yermolaev Y.G., Smorodsky B.V., Kolosov G.L., Yatskikh A.A., Semenov A.N. The influence of moderate angle-of-attack variation on disturbances evolution and transition to turbulence in supersonic boundary layer on swept wing // Journal of Aerospace Engineering: Part G. Proc. of the Inst. of Mech. Engineers. 2020. V. 234. № 1. P. 96–101. https://doi.org/10.1177/0954410019852804
  13. Ермолаев Ю.Г., Косинов А.Д., Кочарин В.Л., Семенов А.Н., Семенов Н.В., Шипуль С.А., Яцких А.А. Влияние малых углов атаки на ламинарно-турбулентный переход сверхзвукового пограничного слоя на стреловидном крыле С χ = 72° // Известия РАН. Механика жидкости и газа. 2022. № 1. С. 32–38. https://doi.org/10.31857/S0568528122010030
  14. Kosinov A.D., Semionov N.V. The laminar-turbulent transition experiments in supersonic boundary layers // AIP Conf. Proc. 2019. V. 2125. P. 030105. https://doi.org/10.1063/1.5117487
  15. Kosinov A.D., Semionov N.V., Yermolaev Yu.G. Disturbances in test section of T-325 supersonic wind tunnel. Novosibirsk, 1999. (Preprint Institute of Theoretical and Applied Mechanics; № 6–99). P. 24.
  16. Жигулев В.Н., Тумин А.М. Возникновение турбулентности. Новосибирск: Наука, 1987. 282 с.
  17. Semenov A.N., Kocharin V.L., Semionov N.V. Numerical simulation of stationary flow around a wing with a subsonic leading edge at M = 2 and 2.5 // J. Physics: Conf. Ser. 2019. V. 1404. № 1. P. 012121. https://doi.org/10.1088/1742-6596/1404/1/012121
  18. Asai M., Saitoh N., Itoh N. Instability of compressible three-dimensional boundary layer to stationary disturbances // Trans. JapanSoc.Aeronaut. SpaceSci. 2001. V. 43. № 142. P. 190–195.
  19. Гапонов С.А., Смородский Б.В. Линейная устойчивость трехмерных пограничных слоев// Прикладная механика и техническая физика. 2008. Т. 49. № 2. С. 3–14.
  20. Semionov N.V., Kosinov A.D., Yermolaev Yu.G. Experimental study of turbulence beginning of supersonic boundary layer on swept wing at Mach numbers 2–4. // Journal of Physics: Conf. Ser. 2011. V. 318. № 032018. P. 1–9. https://doi.org/10.1088/1742-6596/318/3/032018
  21. Швалев Ю.Г. Исследования перехода ламинарного пограничного слоя в турбулентный на моделях в аэродинамической трубе Т-116 ЦАГИ // Труды ЦАГИ. 2011. № 2693.
  22. Семенов Н.В., Ермолаев Ю.Г., Косинов А.Д., Левченко В.Я. Экспериментальное исследование развития возмущений в сверхзвуковом пограничном слое на модели скользящего крыла // Теплофизика и аэромеханика. 2003. Т. 10. № 3. С. 357–368.
  23. Ермолаев Ю.Г., Косинов А.Д., Семенов Н.В. Экспериментальное исследование нелинейных процессов в пограничном слое на скользящем крыле при числе Маха = 2 // Прикладная механика и техническая физика. 2014. Т. 55. № 5. С. 45–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (88KB)
3.

Download (63KB)
4.

Download (45KB)
5.

Download (1MB)
6.

Download (127KB)

Copyright (c) 2023 А.Д. Косинов, В.Л. Кочарин, А.В. Ливерко, А.Н. Семенов, Н.В. Семенов, Б.В. Смородский, С.Н. Толкачев, А.А. Яцких

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».