ИССЛЕДОВАНИЕ РЕЖИМОВ ТЕПЛООБМЕНА В ДОЗВУКОВЫХ СТРУЯХ ДИССОЦИИРОВАННОГО АЗОТА ВЫСОКОЧАСТОТНОГО ИНДУКЦИОННОГО ПЛАЗМОТРОНА ПРИ ДОПОЛНИТЕЛЬНОМ НАГРЕВЕ ПОВЕРХНОСТИ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ

Обложка

Цитировать

Полный текст

Аннотация

На индукционном ВЧ-плазмотроне ВГУ-4 (ИПМех РАН) проведены эксперименты по исследованию теплообмена цилиндрической водоохлаждаемой медной модели диаметром 30 мм, оснащенной калориметрическим датчиком с тепловоспринимающей поверхностью диаметром 13.8 мм из графита, при комбинированном режиме нагрева поверхности плазмой азота и лазерным излучением, а также для случаев нагрева поверхности только лазерным излучением или только струей плазмы азота. Эксперименты в струях ВЧ-плазмотрона проведены при давлении в барокамере установки p = 1 × 104 Па, массовом расходе азота G = 2.4 г/c, мощности ВЧ-генератора плазмотрона по анодному питанию Na.p. = 22 кВт. Для выбранных экспериментальных режимов установлено, что струя диссоциированного азота и высокочастотный индукционный разряд не оказывают заметного влияния на проходящий через них лазерный луч. Получены значения плотности теплового потока в зависимости от подведенной мощности лазерного излучения. Для рассмотренных условий экспериментов проведено численное моделирование дозвукового течения плазмы азота в кварцевом разрядном канале и в пространстве барокамеры установки ВГУ-4, основанное на решении полных уравнений Навье–Стокса методом Патанкара–Сполдинга.

Об авторах

С. А. Васильевский

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

С. С. Галкин

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

А. Ф. Колесников

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

М. А. Котов

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

И. В. Лукомский

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

Н. Г. Соловьев

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

Е. С. Тептеева

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

А. В. Чаплыгин

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

А. Н. Шемякин

Институт проблем механики им. А.Ю. Ишлинского РАН

Email: chaplygin@ipmnet.ru
Россия, Москва

М. Ю. Якимов

Институт проблем механики им. А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: chaplygin@ipmnet.ru
Россия, Москва

Список литературы

  1. Park C. Calculation of stagnation-point heating rates associated with stardust vehicle // J. Spacecr. Rockets. 2007. V. 44. № 1. P. 24–32. https://doi.org/10.2514/1.15745
  2. Dikalyuk A., Kozlov P., Romanenko Y., Shatalov O., Surzhikov S. Nonequilibrium Spectral Radiation Behind the Shock Waves in Martian and Earth Atmospheres // 44th AIAA Thermophysics Conf. Reston, Virginia. 2013. P. 1–27. https://doi.org/10.2514/6.2013-2505
  3. Surzhikov S.T. Radiative-Collisional Models in Non-Equilibrium Aerothermodynamics of Entry Probes // J. Heat Transfer. 2012. V. 134. № 3. P. 1–11. https://doi.org/10.1115/1.4005127
  4. Суржиков С.Т., Яцухно Д.С. Анализ летных данных по конвективному и радиационному нагреву поверхности спускаемого марсианского космического аппарата Schiaparelli // Изв. РАН. МЖГ. 2022. № 6. С. 74–85. https://doi.org/10.31857/S0568528122600394
  5. Venkatapathy E., Ellerby D., Gage P., Prabhu D., Gasch M., Kazemba C., Kellerman C., Langston S., Libben B., Mahzari M., Milos F., Murphy A., Nishioka O., Peterson K., Poteet C., Splinter S., Stackpoole M., Williams J., Young Z. Entry system technology readiness for ice-giant probe missions // Space Sci. Rev. 2020. V. 216. № 2. P. 1–21. https://doi.org/10.1007/s11214-020-0638-2
  6. Laub B., Venkatapathy E. Thermal protection system technology and facility needs for demanding future planetary missions // Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. ESA Publications Division. 2004. V. 544. P. 239–247.
  7. Venkatapathy E., Laub B., Hartman G.J., Arnold J.O., Wright M.J., Allen Jr G.A. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions: Examples for Saturn, Titan and Stardust-type sample return // Adv. Sp. Res. 2009. V. 44. № 1. P. 138–150. https://doi.org/10.1016/j.asr.2008.12.023
  8. Cushman G., Alunni A., Balboni J., Zell P., Hartman J., Empey D. The Laser Enhanced Arc-Jet Facility (LEAF-Lite): Simulating Convective and Radiative Heating with Arc-jets and Multiple 50-kW CW Lasers // Joint Thermophysics and Heat Transfer Conf. 2018. P. 3273. https://doi.org/10.2514/6.2018-3273
  9. Gokcen T., Alunni A. CFD Simulations of the IHF Arc-Jet Flow: 9-Inch Nozzle, Flow Surveys, LEAF Wedge Calibration Data // AIAA Aviation Forum. 2019. P. 3008. https://doi.org/10.2514/6.2019-3008
  10. Alunni A.I., Gokcen T., Boghozian T. Laser-Enhanced Arc-Jet Facility Wedge Tests: Avcoat Material Performance Under Convective and Radiative Heating Environments // Joint Thermophysics and Heat Transfer Conf. 2019. № ARC-E-DAA-TN62912.
  11. Chaplygin A., Kotov M., Yakimov M., Lukomskii I., Galkin S., Kolesnikov A., Shemyakin A., Solovyov N. Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet // Fluids. 2023. 8 (1): 11. https://doi.org/10.3390/fluids8010011
  12. Колесников А.Ф., Гордеев А.Н. Высокочастотные индукционные плазмотроны серии ВГУ // Актуальные проблемы механики: Физико-химическая механика жидкостей и газов. М.: Наука, 2010. С. 151–177.
  13. ASTM E422-05(2016). Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter // ASTM International, West Conshohocken, PA. 2016.
  14. Bottin B., Chazot O., Carbonaro M., Van Der Haegen V., Paris S. The VKI plasmatron characteristics and performance: tech. rep. Von Karman Institute For Fluid Dynamics. Rhode-Saint-Genese (Belgium). 2000. 27 p.
  15. Touloukian Y.S., DeWitt D.P. Thermophysical properties of matter. Purdue Univ. 1972. V. 8. P. 1890.
  16. Васильевский С.А., Колесников А.Ф. Численное исследование течений и теплообмена в индукционной плазме высокочастотного плазмотрона // Энциклопедия низкотемпературной плазмы. Серия Б. 2008. Т. 1, Ч. 2. С. 220–234.
  17. Patankar S.V. Numerical Heat Transfer and Fluid Flow. CRC Press, 2018. 214 p.

Дополнительные файлы


© С.А. Васильевский, С.С. Галкин, А.Ф. Колесников, М.А. Котов, И.В. Лукомский, Н.Г. Соловьев, Е.С. Тептеева, А.В. Чаплыгин, А.Н. Шемякин, М.Ю. Якимов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».