Distinctive Features of Using the Propulsor of the Underwater Sail Type the Direct-Flow Wave Propulsor on a Semisubmerged Catamaran

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the results of experimental investigations of the efficiency of the direct flow wave propulsor and the propulsor of the underwater sail type on the models of semisubmerged catamaran boat with a small area of the section along the waterline. The effects observable in the case of the propulsor of the underwater sail type are qualitatively the same as for the previously studied swinging wing, namely, the greatest efficiency is observable, when the propulsor is situated near the free surface, while its efficiency is rapidly reduced with propulsor immersion. The propulsor efficiency varies only slightly with ship hull immersion, whereas the working frequencies are considerably reduced as compared with those of floating structures. In this case, the working frequencies vary in proportion to the model boat scale. Comprehensive studies of the direct-flow wave propulsor efficiency were performed, an inclined flat plate being fixed at the hulls of a semisubmerged ship as a working element. The optimal parameters of the propulsor were noted, when it efficiently operates on the waves with the greatest steepness (storm waves). Experiments showed that the efficiency of the wave propulsors of the swinging wing or underwater sail types in their operation ranges is somewhat higher than that of the direct-flow propulsor. However, under the rough water conditions the direct-flow propulsor has its own advantages, since precisely in this case it demonstrates its greatest efficiency, while the other versions considered are efficacious in the wavelength range dependent on the ship length and, generally speaking, do not coincide with the storm wave length.

Full Text

Restricted Access

About the authors

E. A. Arkhangelsky

Lomonosov Moscow State University

Email: vlad.prokof@yandex.ru
Russian Federation, Moscow

A. V. Boyko

Lomonosov Moscow State University

Email: mailband@mail.ru
Russian Federation, Moscow

V. V. Prokofyev

Lomonosov Moscow State University

Author for correspondence.
Email: vlad.prokof@yandex.ru
Russian Federation, Moscow

References

  1. Глушко В.Н. Исследование влияния параметров морского волнения на величину тяги, создаваемой волновым движителем в виде колеблющегося крыла с упругой заделкой // Прикладная гидромеханика. 2009. Т. 11. С. 47–53.
  2. Прокофьев В.В., Такмазьян А.К., Филатов Е.В. Результаты испытаний судна с различными волновыми движителями в гидроканале // Изв. РАН МЖГ. 2019. № 6. C. 38–47
  3. Прокофьев В.В., Архангельский Е.А., Бойко А.В. Использование волновых движителей на судне с малой площадью ватерлинии // Изв. РАН МЖГ. 2023. №1. C. 41–53.
  4. Дубровский В.А, Главное о судах с малой площадью ватерлинии // Тр. Крыловского государственного научного центра. 2021. т. 3. № 397. C. 75–82
  5. Колс К.А. Под парусом в шторм /перевод с англ. 1985. Л.: Гидрометеоиздат. 128 с
  6. Прокофьев В.В., Бойко А.В., Чикаренко В.Г. Плавучий якорь. Патент № 2326018, 2008
  7. Прокофьев В.В., Такмазьян А.К., Филатов Е.В., Чикаренко В.Г., Якимов А.Ю. Судовой волнодвижитель. Патент № 2528449. 2014
  8. Прокофьев В.В., Такмазьян А.К., Филатов Е.В. Испытание и расчет движения модели судна с прямоточным волновым движителем // Изв. РАН МЖГ. 2017. №4. C. 24–38.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the wave height Hw on the frequency of operation of the wedge-shaped wavemaker, dotted and red lines - approximations of the 3rd and 2nd modes of wave generation by polynomials. A grid of lines of constant wave steepness at a depth of 950 mm is plotted (thin lines, numbers near the curves - values of wave steepness). 1 - maximum amplitude of wedge rolling, 2, 3 - average and minimum amplitude, respectively.

Download (226KB)
3. Fig. 2. Scheme of the model: 1 - plastic housing-pontoons, 2 - upper platform of the model, 3 - elliptical section stands, H1 - height of pylons, D1 - distance between centres of pontoons, H1 - height of the flow part plate, D2 - distance between plates.

Download (66KB)
4. Fig. 3. Dependence of mean velocity on wave frequencies when changing the vessel's draft H.

Download (180KB)
5. Fig. 4. Dependence of average velocity on wave frequencies at 720 mm draught of the vessel when changing the depth of the propulsor burial H.

Download (157KB)
6. Fig. 5. Dependence of the ship's rocking Hs on wave frequencies at the ship's draught of 710 mm. when changing the depth of immersion of the sail attachment sleeve H. Sleeve immersion depth 50, 0, 300 mm (1-3). 4 - wave height at max amplitude of EP operation.

Download (126KB)
7. Fig. 6. Comparison of the model speed against waves for three different types of UA with approximately the same working element area and close ship drafts: 1 - underwater sail, 2 - rigid profile NACA-0015 (both buried by 50 mm), 3 - straight-through UA (with a fixed profile chord slope of 30°).

Download (126KB)
8. Fig. 7. Dependence of the speed of a vessel with an underwater sail on the total tension force of the threads: 50, 100, 200, 300 grams of force (1-4).

Download (105KB)
9. Fig. 8. Test results of underwater sail-type UA and PVD on semi-submersible ship models of different scales on the same waves. Small model with propulsor immersion 55 mm and hull draft 340, 460 mm (1, 2), large model with propulsor immersion 50 mm, draft 433, 720 mm (3, 4), small model with PVD, plate length 100, 300 mm (5, 6).

Download (137KB)
10. Fig. 9. Dependences of velocity on wave frequency at different wave heights. 1 - min, 2 - mid, 3 - max.

Download (97KB)
11. Fig. 10. Dependence of vessel speed against waves on the plate length. Yellow marks - mode of wavemaker operation max, plate length 100, 200, 300 mm (1-3), blue marks - min, length 100, 140, 300 mm (4-6).

Download (143KB)
12. Fig. 11. Dependence of velocity on wave frequency for a 100 mm long plate at different plate inclination angles: 15°, 30°, 45°, 60°, 90° (1-5).

Download (143KB)
13. Fig. 12. Dependence of velocity on wave frequency for plates with the same position of the upper edge (0 mm) and buried lower edge (70 mm) at different plate inclination angles: 20°, 30°, 45°, 60° (1-4).

Download (147KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».