Estimation of the Maximum Migration Distance of a Finite Volume of Light Fluid in a Saturated Porous Medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Flow of a light fluid through a porous medium saturated with another (heavy) fluid is studied. The one-dimensional formulation of the problem describing two-phase flow in a vertical isolated porous column is considered. Assuming that the volume of light liquid is finite, its maximum upward motion under the action of the buoyancy force is estimated. A simple method for approximate estimate of this migration distance is proposed. It is shown that it is determined by only a single dimensionless number (similarity criterion) over a wide range of fluid and porous medium parameters, and the effect of other parameters is small. The dependence of the maximum migration distance on the distingushed similarity criterion is calculated. The results of study can be useful in estimating the maximum distance over which the injected gas propagates from the well through a water-saturated formation.

Full Text

Restricted Access

About the authors

A. A. Afanasyev

Lomonosov Moscow State University

Author for correspondence.
Email: afanasyev@imec.msu.ru
Russian Federation, Moscow

E. A. Vedeneeva

Lomonosov Moscow State University

Email: el-vedeneeva@imec.msu.ru
Russian Federation, Moscow

I. E. Mikheev

Lomonosov Moscow State University

Email: afanasyev@imec.msu.ru
Russian Federation, Moscow

References

  1. Bickle M.J. Geological carbon storage // Nat. Geosci. 2009. V. 2. № 12. P. 815–818. doi: 10.1038/ngeo687.
  2. Bachu S., Bonijoly D., Bradshaw J., Burruss R., Holloway S., Christensen N.P., Mathiassen O.M. CO2 storage capacity estimation: Methodology and gaps // Int. J. Greenh. Gas Control. 2007. V. 1. № 4. P. 430–443. doi: 10.1016/S1750-5836(07)00086-2.
  3. Afanasyev A., Penigin A., Dymochkina M., Vedeneeva E., Grechko S., Tsvetkova Yu., Mikheev I., Pavlov V., Boronin S., Belovus P., Osiptsov A. Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia // Gas Sci. Eng. 2023. V. 114. 204980. doi: 10.1016/j.jgsce.2023.204980.
  4. Huppert H.E., Neufeld J.A. The fluid mechanics of carbon dioxide sequestration // Annu. Rev. Fluid Mech. 2014. V. 46. P. 255–272. doi: 10.1146/annurev-fluid-011212-140627.
  5. Afanasyev A., Vedeneeva E., Grechko S. Scaling analysis for a 3-D CO2 plume in a sloping aquifer at a late stage of injection // J. Nat. Gas Sci. Eng. 2022. V. 106. 104740. doi: 10.1016/j.jngse.2022.104740.
  6. Afanasyev A., Vedeneeva E., Mikheev I. Monte Carlo simulation of the maximum migration distance of CO2 in a sloping aquifer // Gas Sci. Eng. 2023. V. 117. 205078. doi: 10.1016/j.jgsce.2023.205078.
  7. Killough J.E. Reservoir Simulation With History-Dependent Saturation Functions // Soc. Pet. Eng. J. 1976. V. 16. № 1. P. 37–48. doi: 10.2118/5106-pa.
  8. Buckley S.E., Leverett M.C. Mechanism of fluid displacement in sands // Trans. 1942. V. 146. P. 107-116. doi: 10.2118/942107-G.
  9. Баренблат Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
  10. Афанасьев А.А., Султанова Т.В. Исследование нестационарного двухмерного вытеснения в пористой среде в автомодельной постановке // Изв. РАН МЖГ. 2017. № 4. С. 62-72. doi: 10.7868/S0568528117040065.
  11. Brooks R., Corey A. Hydraulic properties of porous media // Hydrology Papers, Colorado State University. 1964. № 3. 27 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the light fluid saturation distribution g at t = 0 and t → ∞. The force of gravity acts in the opposite direction to the x-axis.

Download (86KB)
3. Fig. 2. Schematic of relative phase permeability curves for drainage and impregnation conditions.

Download (165KB)
4. Fig. 3. Typical view of the function G (sg, sg,hy) when sg = sg,hy (drainage) and sg,hy = 1 (impregnation). The values of sg scaled according to (8) are used.

Download (129KB)
5. Fig. 4. Calculated distributions of sg (x) at successive time moments. At t ≥ 100, the flow parameters do not change practically with time. The bold curve shows the distribution of sg,hy at t >> 1.

Download (193KB)
6. Fig. 5. Calculated light fluid displacements g under different similarity criteria. The dots correspond to the results of numerical simulation, and the curves correspond to the approximate estimation of x*max.

Download (423KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».