SPECIFIC FEATURES OF SUPERSONIC FLOW PAST BODIES WITH INSTANTANEOUS ENERGY INPUT IN A GAS BUBBLE AHEAD OF THE BOW SHOCK

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of instantaneous energy release (explosion) in the gas bubble region on supersonic flow past blunt bodies (sphere) and pointed bodies (ogival body and cone-cylinder combination) is considered when the explosion occurs in unperturbed freestream flow in the immediate neighborhood of the bow shock. Physically, such an effect on the flow can occur with energy input in the region of electric gas discharge or with detonation of a combustible gas mixture inside the bubble. It is found that, in addition to the direct effect of the explosive shock wave on the surface of the body, significant non-stationary changes in the gas-dynamic flow regimes past the bodies occur during the interaction of the bow shock with the dynamically varying explosion region (shockcompressed layer and cavity). In particular, focusing and cumulation effects, which can lead to secondary effects, are noted. The momentum of the latter is comparable to or even greater than the momentum of the direct impact of the blast wave.

About the authors

P. Yu Georgievskii

Moscow State University, Institute of Mechanics

Email: georgi@imec.msu.ru
Moscow, Russia

V. A Levin

Moscow State University, Institute of Mechanics; Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Science

Moscow, Russia; Novosibirsk, Russia

O. G Sutyrin

Moscow State University, Institute of Mechanics

Moscow, Russia

References

  1. Haas J.-F., Sturtevant B. Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities // J. Fluid Mechanics. 1987. V. 181. P. 41–76. https://doi.org/10.1017/S0022112087002003
  2. Quirk J., Karni S. On the Dynamics of a Shock-Bubble Interaction // J. Fluid Mechanics. 1996. V. 318. P. 129–163. https://doi.org/10.1017/S0022112096007069
  3. Zabusky N., Zeng S. Shock Cavity Implosion Morphologies and Vortical Projectile Generation in Axisymmetric Shock–Spherical Fast/Slow Bubble Interactions // J. Fluid Mechanics. 1998. V. 362. P. 327–346. https://doi.org/10.1017/S0022112097008045
  4. Ranjan D., Oakley J., Bonazza R. Shock-Bubble Interactions // Annual Review of Fluid Mechanics. 2011. V. 43. P. 117–140. https://doi.org/10.1146/annurev-fluid-122109-160744
  5. Apazidis N., Eliasson V. Shock Focusing Phenomena. Springer. 2019. 158 p. https://doi.org/10.1007/978-3-319-75866-4
  6. Georgievskii P.Y., Levin V.A., Sutyrin O.G. Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions // Fluid Dynamics. 2010. V. 45. P. 281–288. https://doi.org/10.1134/S0015462810020134
  7. Edney B. Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock // Aeronaut. Res. Inst. of Sweden. 1968. FTA Report 115.
  8. Georgievskii P.Y., Levin V.A., Sutyrin O.G. Cumulation effect upon the interaction between a shock and a local gas region with elevated or lowered density // Fluid Dynamics. 2011. V. 46. P. 967–974. https://doi.org/10.1134/S0015462811060147
  9. Georgievskiy P.Yu., Levin V.A., Sutyrin O.G. Interaction of a Shock with Elliptical Gas Bubbles // Shock Waves. 2015. V. 25. P. 357–369. https://doi.org/10.1007/s00193-015-0557-4
  10. Georgievskii P.Y., Levin V.A. Unsteady interaction of a sphere with atmospheric temperature inhomogeneity at supersonic speed // Fluid Dynamics. 1993. V. 28. P. 568–574. https://doi.org/10.1007/BF01342694
  11. Yan H., Adelgren R., Bogushko M., Elliott G., Knight D. Laser Energy Deposition in Quiescent Air // AIAA J. 2003. V. 41. № 10. P. 1988–1995. https://doi.org/10.2514/2.1888
  12. Schulein A., Zheltovodov A., Pimonov E., Loginov M. Experimental and Numerical Modeling of the Bow Shock Interaction with Pulse-Heated Air Bubbles // Int. J. of Aerospace Innovations. 2010. V. 2. № 3. P. 165–187.
  13. Ohnishi N., Tate M., Ogino Y. Computational Study of Shock Wave Control by Pulse Energy Deposition // Shock Waves. 2012. V. 22. P. 521–531. https://doi.org/10.1007/s00193-012-0407-6
  14. Georgievskiy P., Levin V., Sutyrin O. Shock Focusing Effect for The Interaction of Blunt Bodies with Gas Bubbles in a Supersonic Flow // In: Ben-Dor G., Sadot O., Igra O. (eds) 30th International Symposium on Shock Waves 2. Springer, Cham. 2017. P. 1023–1027. https://doi.org/10.1007/978-3-319-44866-4_42
  15. Левин В.А., Марков В.В., Журавская Т.А. Прямое инициирование детонации в водородовоздушной смеси сходящейся ударной волной // Химическая физика. 2001. Т. 20. № 5. С. 26–30.
  16. Haehn N., Ranjan D., Weber C., Oakley J., Rothamer D., Bonazza R. Reacting shock bubble interaction // Combustion and Flame. 2012. V. 159. № 3. P. 1339–1350. https://doi.org/10.1016/j.combustflame.2011.10.015
  17. Diegelmann F., Tritschler V., Hickel S., Adams N. On the pressure dependence of ignition and mixing in twodimensional reactive shock-bubble interaction // Combustion and Flame. 2016. V. 163. P. 414–426. https://doi.org/10.1016/j.combustflame.2015.10.016
  18. Georgievskiy P.Y., Levin V.A., Sutyrin O.G. Detonation Initiation upon Interaction of a Shock Wave with a Combustible Gas Bubble of Various Densities // Combustion, Explosion, and Shock Waves. 2022. V. 58. P. 571–576. https://doi.org/10.1134/S0010508222050094
  19. MacCormack R.W. The Effect of Viscosity in Hypervelocity Impact Cratering // AIAA Paper 69-354. 1969. 7 p., https://doi.org/10.2514/6.1969-354 (also published in J. Spacecraft and Rockets. 2003. V. 40. № 5. P. 757–763. https://doi.org/10.2514/2.6901)
  20. Zhmakin A., Fursenko A. On a Monotonic Shock-Capturing Difference Scheme // USSR Computational Mathematics and Mathematical Physics. 1980. V. 20. № 4. P. 218–227. https://doi.org/10.1016/0041-5553(80)90283-9
  21. Liska R., Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations // SIAM Journal on Scientific Computing. 2003. V. 25. № 3. P. 995–1017. https://doi.org/10.1137/S1064827502402120
  22. Физика взрыва / Под ред. Л.П. Орленко. Изд. 3-е, испр. В 2 т. Т. 1. М.: Физматлит, 2004. 832 с. ISBN 5-9221-0219-2
  23. Крайко А.Н. Теоретическая газовая динамика: классика и современность. М.: ТОРУС Пресс, 2010. 440 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».