Numerical Analysis of Rarefied Gas Flow through a Periodic System of Channels
- Authors: Voronich I.V1,2, Titarev V.A1,2, Kudriashov A.V2
-
Affiliations:
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Issue: No 3 (2025)
- Pages: 3–14
- Section: Articles
- URL: https://journal-vniispk.ru/1024-7084/article/view/316648
- DOI: https://doi.org/10.31857/S1024708425030018
- ID: 316648
Cite item
Full Text
Abstract
Keywords
About the authors
I. V Voronich
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: voronich.iv@mipt.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia
V. A Titarev
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: vladimir.titarev@frccsc.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia
A. V Kudriashov
Moscow Institute of Physics and Technology
Email: kudriashov.av@mipt.ru
Dolgoprudny, Moscow Region, Russia
References
- Dou H., Xu M., Wang B., Zhang Z., Wen G., Zheng Y., Luo D., Zhao L., Yu A., Zhang L., Jiang Z., Chen Z. Microporous framework membranes for precise molecule/ion separations // Chemical Society Reviews. 2021. V. 50. P. 986–1029.
- Taassob A., Bordbar A., Kheirandish S., Zarnaghsh A., Kamali R., Rana A.S. A review of rarefied gas flow in irregular micro/nanochannels // Journal of Micromechanics and Microengineering. 2021. V. 31. P. 113002.
- Wu L., Ho M., Germanou L., Gu X., Liu C., Xu K., Zhang Y. On the apparent permeability of porous media in rarefied gas flows // Journal of Fluid Mechanics. 2017. V. 822. P. 398–417.
- Memisoglu G., Gulbahar B., Fernandez Bello R. Preparation and characterization of freely-suspended graphene nanomechanical membrane devices with quantum dots for point-of-care applications // Micromachines. 2020. V. 11. No. 1. P. 104.
- Tina B.S., Rohith S., Seena V. Fabrication and electromechanical characterization of silicon nanomechanical membrane flexure mems sensor for gas sensing applications // IEEE Sensors Journal. 2024. V. 24. No. 5. P. 5440–5447.
- Popov S.P., Tcheremissine F.G. Subsonic rarefied gas flow over a rack of flat transverse plates // Journal of Applied Mechanics and Technical Physics. 2008. V. 49. No. 1. P. 46–52.
- Plotnikov M.Yu. Hydrogen dissociation in rarefied gas flow through a wire obstacle // J. Appl. Mech. and Technical Physics. 2018. V. 59. No. 5. P. 794–800.
- Шахов Е.М. Об обобщении релаксационного кинетического уравнения Крука // Изв. АН СССР. МЖГ. 1968. №5. C. 142–145.
- Шарипов Ф.М., Селезнев В.Д. Движение разреженных газов в каналах и микроканалах. Екатеринбург. УРО РАН, 2008.
- Varoutis S., Valougeorgis D., Sharipov F. Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios // J. Vac. Sci. Technol. A. 2009. V. 27. No. 6. P. 1377–1391.
- Sharipov F., Kozak D.V. Rarefied gas flow through a thin slit into vacuum simulated by the Monte Carlo method over the whole range of the Knudsen number // J. Vac. Sci. Technol. A. 2009. V. 27. P. 479.
- Titarev V.A., Shakhov E.M. Computational study of a rarefied gas flow through a long circular pipe into vacuum // Vacuum, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications”. 2012. V. 86. No. 11. P. 1709–1716.
- Titarev V.A. Rarefied gas flow in a planar channel caused by arbitrary pressure and temperature drops // International Journal of Heat and Mass Transfer. 2012. V. 55. No. 21–22. P. 5916–5930.
- Pantazis S., Valougeorgis D. Rarefied gas flow through a cylindrical tube due to a small pressure difference // Eur. J. Mech.-B/Fluids. 2013. V. 38. P. 114–127.
- Valougeorgis D., Vasileiadis N., Titarev V. Validity range of linear kinetic modeling in rarefied pressure driven single gas flows through circular capillaries // European Journal of Mechanics / B Fluids, Special Issue on Non-equilibrium Gas Flows. 2017. V. 64. P. 2–7.
- Титарев В.А., Шахов Е.М. Концевые эффекты при истечении разреженного газа через длинную трубу в вакуум // Известия РАН. МЖГ. 2013. №5. C. 146–158.
- Sharipov F., Seleznev V. Data on internal rarefied gas flows // J. Phys. Chem. Ref. Data. 1998. V. 27. No. 3. P. 657–706.
- Воронич И.В., Титарев В.А. Численный анализ течения разреженного газа через систему коротких каналов // Журнал вычислительной математики и математической физики. 2023. Т. 63. №12. C. 1942–1959.
- Gavasane A., Agrawal A., Pradeep A.M., Bhandarkar U. Simulation of a temperature drop for the flow of rarefied gases in microchannels // Numerical Heat Transfer, Part A: Applications. 2017. V. 71. No. 10. P. 1066–1079.
- Титарев В.А. Применение кода Несветай к решению трехмерных задач высотной аэродинамики // Ж. вычисл. матем. и матем. физ., спецвыпуск по случаю 90-летия академика С.К. Годунова. 2020. Т. 60. №4. C. 752–764.
- Ansys CFX, version 2021 R2. https://www.ansys.com/products/fluids/ansys-cfx
- Barth T., Jespersen D.C. The design and application of upwind schemes on unstructured meshes // AIAA paper 89-0366. 1989.
- Rao S.S. The Finite Element Method in Engineering. 6th ed. Elsevier, 2018.
Supplementary files
