MEASUREMENT OF THE RADIATION HEAT FLUX GENERATED BY THE SHOCK WAVE FRONT IN THE DIRECTION OF ITS MOVEMENT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for measuring the radiation characteristics of shock-heated air is proposed. The method utilizes shock tube recording equipment to record the radiation power generated by the shock front in the direction of its motion. The experiments were conducted using a DDST-M double-diaphragm shock tube at the Institute of Mechanics, Moscow State University, in the shock wave velocity range VSW from 8 to 10.6 km/s at a shock front pressure of p0 = 0.25 Torr. The radiation wavelength range λ = 200–700 nm was investigated, where both molecular bands and atomic lines of nitrogen and oxygen contribute to the radiation. The measured radiation spectrograms were analyzed. The obtained results were compared with those obtained using the traditional time-integrated method, in which the radiation flux is recorded through a window in the side surface of the shock tube perpendicular to the tube axis as a “plug” of shock-heated gas passes the window.

About the authors

P. V Kozlov

M.V. Lomonosov Moscow State University, Institute of Mechanics

Email: vyl69@mail.ru
Moscow, Russia

G. Ya Gerasimov

M.V. Lomonosov Moscow State University, Institute of Mechanics

Moscow, Russia

V. Yu Levashov

M.V. Lomonosov Moscow State University, Institute of Mechanics

Email: levashovvy@imec.msu.ru
Moscow, Russia

N. G Bykova

M.V. Lomonosov Moscow State University, Institute of Mechanics

Moscow, Russia

I. E Zabelinsky

M.V. Lomonosov Moscow State University, Institute of Mechanics

Moscow, Russia

References

  1. Brandis A.M., Johnson C.O. Characterization of stagnation-point heat flux for Earth entry // AIAA Paper 2014-2374. 20 p.
  2. Reyner P. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations // Prog. Aerospace Sci. 2016. V. 85. P. 1–32.
  3. Gu S., Olivier H. Capabilities and limitations of existing hypersonic facilities // Prog. Aerospace Sci. 2020. V. 113. №100607. 27 p.
  4. Brandis A.M., Johnson C.O., and Cruden B.A. Investigation of non-equilibrium radiation for Earth entry // AIAA Paper 2016-3690. 19 p.
  5. Brandis A.M., Cruden B.A. Benchmark shock tube experiments of radiative heating relevant to earth re-entry // AIAA Paper 2017-1145. 50 p.
  6. Jacobs C.M., McIntyre T.J., Morgan R.G., Brandis A.M., and Laux C.O. Radiative heat transfer measurements in lowdensity Titan atmospheres // J. Thermophys. Heat Transf. 2015. V. 29. P. 835–844.
  7. Takayanagi H., Fujita K. // Absolute radiation measurements behind strong shock wave in carbon dioxide flow for Mars aerocapture missions // AIAA Paper 2012-2744. 7p.
  8. Залогин Г.Н., Козлов П.В., Кузнецова Л.А., Лосев С.А., Макаров В.Н., Романенко Ю.В., Суржиков С.Т. Излучение смеси CO2–N2–Ar в ударных волнах: эксперимент и теория // Ж. техн. физики. 2001. Т. 71. № 6. С. 10–16.
  9. Kozlov P.V., Surzhikov S.T. Nonequilibrium radiation NO in shocked air // AIAA Paper 2017-0157. 16 p.
  10. Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. Экспериментальное исследование излучательных характеристик ударно-нагретого воздуха в ультрафиолетовой и видимой областях спектра // Изв. РАН. МЖГ. 2022.№6. С. 85–93.
  11. Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu., Tunik Yu.V. Experimental study of air radiation behand a strong shock wave // Acta Astronaut. 2022. V. 194. P. 461–467.
  12. Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. Излучательные характеристики ударно нагретого воздуха в видимой и инфракрасной областях спектра // Изв. РАН. МЖГ. 2023. № 5. С. 138–146.
  13. Kozlov P.V., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu., Kotov M.A., Zabelinsky I.E. Radiation properties of air behind strong shock wave // Acta Astronaut. 2024. V. 214. P. 303–315.
  14. Суржиков С.Т. Расчет неравновесного излучения ударных волн воздухе с использованием двух моделей // Изв. РАН. МЖГ. 2019.№1. С. 99–114.
  15. McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. T6: The Oxford University Stalker tunnel // AIAA Paper 2015-3545. 11 p.
  16. Забелинский И.Е., Ибрагимова Л.Б., Шаталов О.П. Измерение колебательной температуры кислорода за фронтом ударной волны в условиях термической и химической неравновесности // Изв. РАН. МЖГ. 2010. №3. С. 159–167.
  17. Ibraguimova L.B., Sergievskaya A.L., Levashov V.Vu., Shatalov O.P., Tunik Yu.V., and Zabelinskii I.E. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K // J. Chem. Phys. 2013. V. 139. №034317. 10 p.
  18. Streicher J.W., Krish A., and Hanson R.K. High-temperature vibrational relaxation and decomposition of shockheated nitric oxide: II. Nitrogen dilution from 1900 to 8200 K // Phys. Fluids. 2022. V. 34.№116123. 28 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).