Modeling of the surface film influence on thermoelastic instability during friction of composite brake discs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper examines the process of thermoelastic instability occurrence during unsteady friction of anisotropic disk samples in the presence of a third body film on the friction surface. This process takes place during the operation of highly loaded braking systems (in aviation and railway transport), specialized clutches of motor vehicles and in other mechanisms. The presence of surface film leads to a decrease in surface wear simultaneously with the emergence of significant nonlinearity in the wear rate. The finite difference method was used to simulate the mutual influence of wear, frictional heating, elastic deformations and the evolution of the film on the friction surface. The process of friction and wear of discs was studied taking into account the history of a series of braking events. The annular shape of surface pressures and temperatures distribution is considered. A comparison was made of the evolution of disc wear from braking to braking for the cases of the film presence, its absence, and experimentally measured wear.

About the authors

A. G. Shpenev

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: kel-a-kris@list.ru
Russian Federation, Moscow

References

  1. Gadow R., Jiménez M. Carbon fiber-reinforced carbon composites for aircraft brakes // American Ceramic Society Bulletin. 2019. V. 98. P. 28–34.
  2. Barber J.R. Thermoelastic instabilities in the sliding of conforming solids // Proc. R. Soc. London A. 1969. V. 312. № 1510. P. 381–394
  3. Graf M., Ostermeyer G.-P. Efficient computation of thermoelastic instabilities in the presence of wear // Wear. 2014. V. 312. P. 11–20. https://doi.org/10.1016/j.wear.2014.01.008
  4. Adams G.G. Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction // ASME J. Appl. Mech. 1995. V. 62. P. 867–872. https://doi.org/10.1115/1.2896013
  5. Shpenev A.G. The influence of the thermoelastic instability on the wear of composite brake discs // J. Frict. Wear. 2021. Vol. 42. P. 30–37. https://doi.org/10.3103/S1068366621010104
  6. Johansson P., Marklund P., Björling M., Shi Y. Effect of humidity and counterface material on the friction and wear of carbon fiber reinforced PTFE composites // Tribology International. 2021. V. 157. P. 106869. https://doi.org/10.1016/j.triboint.2021.106869
  7. Shcherbakova O.O., Bukovsky P.O., Muravyeva T.I., Shpenev A.G., et al. Study of the counterbody material influence on the tribological characteristics of carbon composites based on fabric prepregs // J. Surf. Investig.: X-ray, Synchrotron and Neutron Techniques. 2024. Accepted manuscript.
  8. Fillot N., Iordanoff I., Berthier Y. Wear modeling and the third body concept // Wear. 2007. V. 262, P. 949–957. https://doi.org/10.1016/j.wear.2006.10.011
  9. Kubacka E, Ostrowski P. Influence of Composite Structure on Temperature Distribution—An Analysis Using the Finite Difference Method // Materials. 2023. V. 16. P. 5193. https://doi.org/10.3390/ma16145193
  10. Shpenev A.G., Muravyeva T.I., Shkalei I.V. et al. Influence of the Surface Film (Third Body) on the Friction and Wear Process of Carbon-Fiber Composites // J. Surf. Investig. 2022. V. 16, P. 397–401. https://doi.org/10.1134/S1027451022030326
  11. Bukovskiy P.O., Morozov A.V., Kulakov V.V. et al. High-Temperature Tribotechnical Properties of Carbon–Carbon Friction Composites // J. Frict. Wear. 2022. V. 43, P. 322–329. https://doi.org/10.3103/S1068366622050026
  12. Shpenev A.G., Kenigfest A.M, Golubkov A.K. Theoretical and Experimental Study of Carbon Brake Discs Frictionally Induced Thermoelastic Instability // Springer Proceedings Phys. 2016. V. 175. P. 551–559. https://doi.org/10.1007/978-3-319-26324-3_39

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Contact diagram of a pair of disks

Download (60KB)
3. Fig. 2. Dependence of contact pressures p(r, t) (MPa) on the radial coordinate r (mm) and the time coordinate t (s) for the first (left) and second (right) successive braking, taking into account the presence of a surface film

Download (238KB)
4. Fig. 3. Dependence of contact temperatures on the friction surface T(r,0,t) (C) on the radial coordinate r (mm) and the time coordinate t (s) for the first (left) and second (right) successive braking, taking into account the presence of a surface film

Download (207KB)
5. Fig. 4. Dependence of contact pressures p(r, t) (MPa) on the radial coordinate r (mm) and the time coordinate t (s) for the first (left) and second (right) successive braking without taking into account the presence of a surface film

Download (212KB)
6. Fig. 5. Dependence of contact temperatures on the friction surface T(r,0,t) (°C) on the radial coordinate r (mm) and the time coordinate t (s) for the first (left) and second (right) successive braking without taking into account the presence of a surface film

Download (204KB)
7. Fig. 6. Dependence of linear wear uW (mm) on radial coordinate r (mm) (shape of worn surface) for 10 consecutive brakings taking into account the presence of a surface film. Odd brakings are highlighted with bold lines.

Download (69KB)
8. Fig. 7. Dependence of linear wear uW (mm) on radial coordinate r (mm) (shape of worn surface) for 10 consecutive brakings without taking into account the presence of a surface film. Odd brakings are highlighted with bold lines

Download (74KB)
9. Fig. 8. Dependence of the average linear wear for one braking UW (mm) on the braking number N for 10 consecutive brakings taking into account the presence of a film (solid line) and without taking into account the presence of a film (dashed line)

Download (53KB)
10. Fig. 9. Dependence of the ratio of wear intensity taking into account the film to the wear intensity without taking into account the film (I = .uW / .uW*) on the geometric parameter of the contact S/L (mm)

Download (43KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».