On the influence of a non-classical diffusion process on the long-term fracture of a composite tensile rod during creep

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stress-strain state is considered and the time to fracture of a composite tensile rod during creep in an active medium is determined. The influence of the active medium is determined by a non-classical diffusion process, with the active substance penetrating into the material in two states: free and bound. The process of such diffusion is described by a modified diffusion equation that takes into account the two-phase state of the active substance in the material. A system of equations has been obtained that models the creep of a composite rod, in which its parts are rigidly connected to each other without slipping, and also includes kinetic equations for the accumulation of damage in parts of the rod. The influence of the active medium is taken into account by introducing into the indicated kinetic equations the function of the influence of the active medium - a function of the integral average concentration. Stress distributions and damage accumulation processes over time in various parts of the composite rod are analyzed. Calculations were carried out in two cases, namely, classical and non-classical diffusion processes are considered. The setting of these differences is determined by the choice of appropriate parameters in the diffusion model under consideration. Dependences of damage accumulation and stress distribution in parts of the rod over time were obtained. As a result, it was determined that the destruction of a composite rod in the classical case occurs earlier than in the case of the considered non-classical diffusion process.

Full Text

Restricted Access

About the authors

L. V. Fomin

Research Institute of mechanics of Lomonosov Moscow State University

Author for correspondence.
Email: fleonid1975@mail.ru
Russian Federation, Moscow

A. A. Dalinkevich

Research Institute of mechanics of Lomonosov Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: dalinckevich@yandex.ru
Russian Federation, Moscow; Moscow

Yu. G. Basalov

Research Institute of mechanics of Lomonosov Moscow State University

Email: basalov@yandex.ru
Russian Federation, Moscow

References

  1. Rabotnov Yu.N. Creep of structural elements. Moscow: Nauka, 1966. 752 p.
  2. Lokoshchenko A.M. Creep and long-term strength of metals. Moscow: Fizmatlit, 2016. 504 p. (in Russian) = Lokoshchenko A.M. Creep and Long-Term Strength of Metals. CISP. CRC Press. Taylor & Francis Group. Boca. Raton. London. New York. 2017. 546 p. https://doi.org/10.1201/b22242.
  3. Alexander Lokoshchenko and Leonid Fomin. Kinetic Theory of Creep and Long-Term Strength of Metals, in Kinetic Theory, George Z. Kyzas and Athanasios C. Mitropoulos, IntechOpen, (December 20th 2017). https://doi.org/10.5772/intechopen.70768.
  4. Fomin L.V., Basalov Yu.G. On the long-term fracture of a composite tensile rod under creep conditions // Bulletin of the Russian Academy of Sciences. Mechanics of Solids. 2023, No. 1. P. 28–40. (in Russian)
  5. Lokoshchenko A.M., Fomin L.V. Delayed fracture of plates under creep condition in unsteady complex stress state in the presence of aggressive medium // Applied Mathematical Modelling. 2018. Vol. 60. P. 478−489. https://doi.org/10.1016/j.apm.2018.03.031.
  6. Weinberg A.M., Wigner E.P. The physical theory of neutron chain reactors, Chapter VIII, The University of Chicago Press. 1958.
  7. Chuvildeev V.N., Smirnova E.S. Phenomenological theory of volume diffusion // Physics of the Solid State. 2016. Vol. 58. Issue. 7. Pp. 1436–1447. (in Russian).
  8. Kofstad P. Deviation from stoichiometry, diffusion, and electrical conductivity in porous metal oxides / Translation from English edited by N.N. Semenov. Moscow: Mir. 1975. 398 p. (in Russian)
  9. Harris G. Carter, Kenneth G. Kibler. Langmuir-tipe model for anomalous moisture diffusion in composite resins // J. Composite Materials. 1978. Vol. 12. P. 118–131.
  10. Lavrentiev M.A., Shabat B.V. Methods of the Theory of Functions of a Complex Variable. Moscow: Main Editorial Board of Physical and Mathematical Literature, Nauka Publishing House, 1973, 736 p. (in Russian)
  11. Fomin L.V. Description of the Long-Term Strength of Tensile Rods of Rectangular and Circular Cross-Sections in a High-Temperature Air Medium // Bulletin of the Samara State Tech. University. Series: Phys. and Mathematics. Sciences. 2013. No. 3 (32). P. 87–97. (in Russian) https://doi.org/10.14498/vsgtu1228
  12. Oding I.A., Friedman Z.G. The Role of Surface Layers in Long-Term Fracture of Metals under Creep Conditions // Plant. Lab. 1959. 25:3. P. 329–332. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the arrangement of parts in the rod.

Download (41KB)
3. Fig. 2. Schematic of the impact of the active medium on the composite rod.

Download (71KB)
4. Fig. 3. Dependences of dimensionless stresses on dimensionless time in parts of the composite rod when taking into account non-classical (designations: 1, 2) and classical (designations: 3, 4) diffusion processes.

Download (108KB)
5. Fig. 4. Dependences of damage parameters on dimensionless time in parts of the composite rod when taking into account non-classical (designations: 1, 2) diffusion process.

Download (104KB)
6. Fig. 5. Dependences of damage parameters on dimensionless time in parts of the composite rod when taking into account the classical (designations: 3, 4) diffusion process.

Download (117KB)
7. Fig. 5. Dependences of damage parameters on dimensionless time in parts of the composite rod when taking into account the classical (designations: 3, 4) diffusion process. Fig. 6. Dependences of integral mean concentration on dimensionless time in parts of the composite rod when taking into account non-classical (designations: I) and classical (designations: II) diffusion processes.

Download (112KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».