Multifunctional shuttle for processing small diameter and ultra-thin semicon-ductor wafers
- Авторлар: Djuzhev N.A.1, Gusev E.E.1, Fomichev M.Y.1, Ivanin P.S.1, Kushnarev I.V.1, Bespalov V.A.1
-
Мекемелер:
- National Research University of Electronic Technology
- Шығарылым: № 2 (2025)
- Беттер: 68-82
- Бөлім: Articles
- URL: https://journal-vniispk.ru/1026-3519/article/view/295911
- DOI: https://doi.org/10.31857/S1026351925020041
- EDN: https://elibrary.ru/anapsx
- ID: 295911
Дәйексөз келтіру
Аннотация
In a first for Russia, a 100 mm diameter wafer was processed to create holes for TSV structures using automated equipment designed for 150mm diameter wafers without needing to reconfigure the installations. A shuttle wafer was developed for this purpose. The reliability of the silicon shuttle was determined through experimental studies of the mechanical strength of silicon. The thickness of the ultra-thin Si wafer that can be processed without damage in the shuttle wafer on installations with a vacuum table was calculated based on the data obtained.
Негізгі сөздер
Толық мәтін

Авторлар туралы
N. Djuzhev
National Research University of Electronic Technology
Хат алмасуға жауапты Автор.
Email: bubbledouble@mail.ru
Ресей, Moscow
E. Gusev
National Research University of Electronic Technology
Email: bubbledouble@mail.ru
Ресей, Moscow
M. Fomichev
National Research University of Electronic Technology
Email: bubbledouble@mail.ru
Ресей, Moscow
P. Ivanin
National Research University of Electronic Technology
Email: bubbledouble@mail.ru
Ресей, Moscow
I. Kushnarev
National Research University of Electronic Technology
Email: bubbledouble@mail.ru
Ресей, Moscow
V. Bespalov
National Research University of Electronic Technology
Email: bubbledouble@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Panfeng J. et al. High quality and uniformity GaN grown on 150 mm Si substrate using in-situ NH3 pulse flow cleaning process // Superlattices Microstruct. 2017. V. 104. P. 112–117. https://doi.org/10.1016/j.spmi.2017.02.019
- Musolino M. et al. Paving the way toward the world’s first 200mm SiC pilot line // Mater. Sci. Semicond. Process. 2021. V. 135. P. 106088. https://doi.org/10.1016/j.mssp.2021.106088
- Peter O.H. The 300 mm silicon wafer - a cost and technology challenge // Microelectron. Eng. 2001. V. 56. № 1–2. P. 3–13. https://doi.org/10.1016/S0167-9317(00)00499-8
- Goldstein M., Watanabe M. 450 mm Silicon Wafers Challenges – Wafer Thickness Scaling // ECS Transactions. 2008. V. 16. № 6. P. 3–13. https://doi.org/10.1149/1.2980288
- Sotnik L., Hubar A. Impact of automation and cals technologies on human factor in production // The 5th International scientific and practical conference “Perspectives of contemporary science: theory and practice”. 2024. P. 243.
- D’Addona D. et al. Adaptive automation and human factors in manufacturing: An experimental assessment for a cognitive approach // CIRP Annals. 2018. V. 67. № 1. https://doi.org/10.1016/j.cirp.2018.04.123
- Shiojima T. et al. Development of Self-releasing adhesive tape as a temporary bonding material for 3D integration // IEEE 70th Electronic Components and Technology Conference. 2020. P. 75–82. https://doi.org/10.1109/ECTC32862.2020.00025
- Sakamoto Y. et al. A Temporary Bonding De-Bonding Tape with High Thermal Resistance and Excellent TTV for 3DIC // International Conference on Electronics Packaging. 2023. P. 39–40. https://doi.org/10.23919/ICEP58572.2023.10129768
- Oh S., Zheng T., Bakir M.S. Electrical Characterization of Shielded TSVs With Airgap Isolation for RF/mmWave Applications // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2024. V. 14. № 2. P. 202–210. https://doi.org/10.1109/TCPMT.2024.3358102
- Handbook of wafer bonding / Ed. Ramm P., Lu J. Q., Visser Taklo M. Wiley-VCH Verlag & Co. KgaA, 2012. P. 329. https://doi.org/10.1002/9783527644223.ch15
- Lychev S. et al. Deformations of Single-Crystal Silicon Circular Plate: Theory and Experiment // Symmetry. 2024. V. 16. № 2. P. 137. https://doi.org/10.3390/sym160201374
- Dyuzhev N.A. et al. Study of the Effect of Radiation Exposure on Grain Size and Mechanical Properties of Thin-Film Aluminum // Mechanics of Solids. 2024. V. 59. P. 20–26. https://doi.org/10.1134/S0025654423601040
- Dyuzhev N.A. et al. Features of influence of grain orientation and size on mechanical properties of Al/Mo thin film membranes // Tech. Phys. Lett. 2024. V. 50, № 9. P. 10–15. https://doi.org/10.61011/PJTF.2024.09.57561.19833
- Kozlov V. et al. Study of the mechanical strength of thin silicon wafers in the dependance on their surface treatment during thinning // Tech. Phys. Lett. 2022. № 9. P. 26. https://doi.org/0.21883/TPL.2022.09.55077.19244
- Petersen K.E. Silicon as a mechanical material // Proceedings of the IEEE 1982. V. 70. № 5. P. 420–457. https://doi.org/10.1109/PROC.1982.12331
- Lychev S. et al. Deformations of Single-Crystal Silicon Circular Plate: Theory and Experiment // Symmetry. 2024. V. 16. № 2. P. 137. https://doi.org/10.3390/sym16020137
- Huda Z., Saufi M., Shaifulazuar. Mechanism of Grain Growth in an Aerospace Aluminum Alloy // J. Ind. Technol. 2006. V. 15. № 2. P. 127–136.
- Multifunctional wafer holder used in monolithic integrated circuit manufacturing: patent 224497 Russian Federation. № 2023122514 / Gusev E.E., Ivanin P.S., Fomichev M.Y., Zolnikov K.V.; state registration 28.03.24.
- Jourdain A., Schleicher A., Vos J. Extreme Wafer Thinning and nano-TSV processing for 3D Heterogeneous Integration // 70th Electronic Components and Technology Conference. 2020. P. 42. https://doi.org/10.1109/ECTC32862.2020.00020
- Murugesan M. et al. Nano Ni/Cu-TSVs with an Improved Reliability for 3D-IC Integration Application // 31st Annual SEMI Advanced Semiconductor Manufacturing Conference. 2020. P. 1. https://doi.org/10.1109/ASMC49169.2020.9185397
- Dinh Q., Kondo K., Hirato T. Reduction of TSV Pumping // International 3D Systems Integration Conference. 2019. P. 1. https://doi.org/10.1109/3DIC48104.2019.9058846
- Shen W.-W., Chen K.-N. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV) // Nanoscale Research Letters. 2017. V. 12. № 56. https://doi.org/10.1186/s11671-017-1831-4
- Ko C.-T., Chen K.-N. Reliability of key technologies in 3D integration // Microelectron. Reliab. 2013. V. 53. № 1. P. 7. https://doi.org/10.1016/j.microrel.2012.08.011
- Dukovic J. et al. Through-Silicon-Via Technology for 3D Integration // IEEE International Memory Workshop. 2010. P. 1. https://doi.org/10.1109/IMW.2010.5488399
- Bauer J. et al. Spectroscopic reflectometry for characterization of Through Silicon Via profile of Bosch etching process // J. Vacuum Science & Technology B, 2019. V. 37. № 6. https://doi.org/10.1116/1.5120617
- Ham Y.-H., Kim D., Baek K.-H. Metal/Dielectric Liner Formation by a Simple Solution Process for through Silicon via Interconnection // Electrochem. Solid-State Lett. 2011. V. 15. № 5. https://doi.org/10.1149/2.esl113678
- Luo W. et al. Pretreatment to assure the copper filling in through-silicon vias // J. Mater. Sci.: Mater. Electron. 2016. V. 27. № 7. P. 7460–7466. https://doi.org/10.1007/s10854-016-4723-y
- Zhang J. et al. The TSV process in the hybrid pixel detector for the High Energy Photon Source // Nucl. Instrum. Methods Phys. Res. 2020. V. 980. № 164425. https://doi.org/10.1016/j.nima.2020.164425
- Gambino J. et al. Through-silicon-via Process Control in Manufacturing for SiGe Power Amplifiers // Proc.- Electron. Compon. Technol. Conf. 2013. P. 221. https://doi.org/10.1109/ECTC.2013.6575575
- Yan Y. et al. Investigation of reliability and security of the 3D packaging structure // 21st International Conference on Electronic Packaging Technology. 2020. P. 1. https://doi.org/10.1109/ICEPT50128.2020.9202416
- Djuzhev N.A. et al. Technology for Manufacturing TSV Structures for the Creation of Silicon Interposers Using Temporary-Bonding Technology // Nanobiotechnology Reports. 2024. V. 19. № 2. P. 197–207. https://doi.org/10.1134/S2635167624600408
Қосымша файлдар
