Mechanics of blood flow and wall deformation in the abdominal aorta
- Autores: Verezub N.A.1, Ghandilyan D.V.1, Lisovenko D.S.1, Pantushov V.V.2, Prostomolotov A.I.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics RAS
- A.S. Puchkov Ambulance and Emergency Medical Care Station
- Edição: Nº 2 (2025)
- Páginas: 96-118
- Seção: Articles
- URL: https://journal-vniispk.ru/1026-3519/article/view/295921
- DOI: https://doi.org/10.31857/S1026351925020068
- EDN: https://elibrary.ru/angerv
- ID: 295921
Citar
Resumo
The medical problems of vascular mechanics are discussed in relation to the issues of blood flow and deformation of the walls in the abdominal part of the human aorta, including the formation of an aneurysm. The articles analyzed that present modern medical concepts about the hydromechanics of blood flow and deformations of arterial walls, as well as which provide the physical parameters necessary for mathematical modeling. The results of coupled mathematical modeling of blood flow and deformations of the walls in the abdominal part of the aorta in various pathological processes in it, considered in modeling as mechanical damage, including in the presence of an aneurysm, are presented. The effect of an aneurysm on the deposition of red blood cells from the blood flow is also analyzed.
Palavras-chave
Sobre autores
N. Verezub
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Rússia, Moscow
D. Ghandilyan
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Rússia, Moscow
D. Lisovenko
Ishlinsky Institute for Problems in Mechanics RAS
Autor responsável pela correspondência
Email: lisovenk@ipmnet.ru
Rússia, Moscow
V. Pantushov
A.S. Puchkov Ambulance and Emergency Medical Care Station
Email: lisovenk@ipmnet.ru
Rússia, Moscow
A. Prostomolotov
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Rússia, Moscow
Bibliografia
- Tregubov V.P. Mathematical modelling of the non-Newtonian blood flow in the aortic arc // Computer Research and Modeling. 2017. V. 9. № 2. P. 259–269. https://doi.org/10.20537/2076-7633-2017-9-2-259-269
- Hughes T.J.R., Liu W.K., Zimmermann T.K. Lagrangian–Eulerian finite element formulation for incompressible viscous flows // Comput. Methods Appl. Mech. Eng. 1981. V. 29. № 3. P. 329–349. https://doi.org/10.1016/0045-7825(81)90049-9
- Urquiza S.A., Blanco P.J., Venere M.J., Feijoo R.A. Multidimensional modelling for the carotid artery blood flow // Comput. Methods Appl. Mech. Eng. 2006. V. 195. P. 4002–4017. https://doi.org/10.1016/j.cma.2005.07.014
- Ladisa J.F., Figueroa C.A., Vignon-Clementel I.E. et. al. Computational simulations for aortic coarctation: representative results from a sampling of patients // J. Biomech. Eng. 2011. V. 133. № 9. P. 091008. https://doi.org/10.1115/1.4004996
- Mokhtar W. Effect of negative angle cannulation during cardiopulmonary bypass – A computational fluid dynamics study. Inter. J. Biomedical Eng. Sci. 2017. V. 4. № 2. P. 1–13. https://doi.org/10.5121/ijbes.2017.4201
- Svensson J., Gårdhagen R., Heiberg E. et. al. Feasibility of patient specific aortic blood flow CFD simulation // Lecture Notes in Computer Science “Medical Image Computing and Computer Assisted Intervention – MICCAI 2006”. 2006. V. 4190. P. 257–263. https://doi.org/10.1007/11866565_32
- Simão M., Ferreira J., Tomás A.C. et. al. Aorta ascending aneurysm analysis using CFD models towards possible anomalies // Fluids. 2017. V. 2. № 2. P. 31. https://doi.org/10.3390/fluids2020031
- Ku D.N. Blood flow in arteries // Annu. Rev. Fluid Mech. 1997. V. 29. № 1. P. 399–434. https://doi.org/10.1146/annurev.fluid.29.1.399
- Mueller T., Rengier F., Muller-Eschner M. et. al. Supra aortic blood flow distribution measured with phase-contrast MR angiography // European Society of Radiology. European Congress of Radiology (ECR 2012). 2012. https://dx.doi.org/10.1594/ecr2012/C-2020
- Shin E., Kim J.J., Lee S. et. al. Hemodynamics in diabetic human aorta using computational fluid dynamics // PLoS ONE. 2018. V. 13. № 8. P. e0202671. https://doi.org/10.1371/journal.pone.0202671
- Morris L., Delassus P., Callanan A. et. al. 3-D Numerical simulation of blood flow through models of the human aorta // J. Biomech. Eng. 2005. V. 127. № 5. P. 767. https://doi.org/10.1115/1.1992521
- Vlachopoulos C., O’Rourke M., Nichols W.W. McDonalds blood flow in arteries: Theoretical, experimental and clinical principles. London: CRC Press, 2011. 768 p. https://doi.org/10.1201/b1356
- Klipstein R., Firmin D., Underwood S. et. al. Blood flow patterns in the human aorta studied by magnetic resonance // Heart. 1987. V. 58. № 4. P. 316–323. https://doi.org/10.1136/hrt.58.4.316
- Stein P., Sabbah H. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves // Circulation Research. 1976. V. 39. № 1. P. 58–65. https://doi.org/10.1161/01.res.39.1.58
- Lipovka A.I., Karpenko A.A., Chupakhin A.P. et. al. Strength properties of abdominal aortic vessels: experimental results and perspectives // J. Appl. Mech. Tech. Phys. 2022. V. 63. № 2. P. 251–258. https://doi.org/10.1134/S0021894422020080
- Medvedev A.E., Erokhin A.D. Mathematical analysis of aortic deformation in aneurysm and wall dissection // Маth. Biol. Bioinform. 2023. V. 18 (Suppl). P. t94–t106. https://doi.org/10.17537/2023.18.t94
- Robinson W.P., Schanzer A., Li Y. et. al. Derivation and validation of a practical risk score for prediction of mortality after open repair of ruptured abdominal aortic aneurysms in a US regional cohort and comparison to existing scoring systems // J. Vascular Surgery. 2013. V. 57. № 2. P. 354–361. https://doi.org/10.1016/j.jvs.2012.08.120
- Backes D., Vergouwen M.D., Tiel Groenestege A.T. et. al. Phases score for prediction of intracranial aneurysm growth // Stroke. 2015. V. 46. № 5. P. 1221–1226. https://doi.org/10.1161/strokeaha.114.008198
- Attard M. Finite strain – isotropic hyperelasticity // Int. J. Solids Struct. 2003. V. 40. № 17. P. 4353–4378. https://doi.org/10.1016/S0020-7683(03)00217-8
- Fluid-Structure Interaction in a Network of Blood Vessels // Comsol Documentation. 18 p. https://doc.comsol.com/6.1/doc/com.comsol.help.models.sme.blood_vessel/blood_vessel.html
- Fadhil N.A., Hammoodi K.A., Jassim L. et. al. Multiphysics analysis for fluid–structure interaction of blood biological flow inside three-dimensional artery // Curved and Layered Structures. 2023. V. 10. № 1. P. 20220187. https://doi.org/10.1515/cls-2022-0187
- Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. The mechanics of the circulation. Oxford: OUP Publ., 1978. 527 p.
- Khosravi A., Bani M.S., Bahreinizade H., Karimi A. A computational fluid–structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta // Biosci. Rep. 2016. V. 36. № 6. P. e00431. https://doi.org/10.1042/BSR20160468
- Fedotova Ya.V., Epifanov R.Yu., Volkova I.I. et. al. Personalized numerical simulation of haemodynamics in abdominal aortic aneurysm: analysis of simulation sensitivity to the input boundary conditions // Thermophys. Aeromech. 2024. V. 31. № 2. P. 375–391. https://doi.org/10.1134/S0869864324020161
- Sabbah H.N., Hawkins E.T., Stein P.D. Flow separation in the renal arteries // Arteriosclerosis. 1984. V. 4. № 1. P. 28–33. https://doi.org/10.1161/01.atv.4.1.28
- Lee K., Shirshin E., Rovnyagina N. et. al. Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics // Biomedical Optics Express. 2018. V. 9. № 6. P. 2755–2764. http://dx.doi.org/10.1364/BOE.9.002755
- Prostomolotov A.I., Verezub N.A. Mechanics of crystalline materials production processes. Moscow, MISiS, 2023. 568 p. (In Russian). https://doi.org/10.61726/5600.2024.15.25.001
- Funck C., Laun F.B., Wetscherek A. Characterization of the diffusion coefficient of blood // Magnetic Resonance in Medicine. 2018. V. 79. № 5. P. 2752–2758. https://doi.org/10.1002/mrm.26919
- Hund S.J., Antaki J.F. An extended convection diffusion model for red blood cell enhanced transport of thrombocytes and leukocytes // Phys. Med. Biol. 2009. V. 54. P. 6415–6435. https://doi.org/10.1088/0031-9155/54/20/024
- Bokeria L.A. Aortic aneurysms. Moscow, Medicine. 2001. 204 c.
- Foller M., Braun M., Qadri S.M. et. al. Temperature sensitivity of suicidal erythrocyte death // Eur. J. Clinical Investigation. 2010. V. 40. № 6. P. 534–540. https://doi.org/10.1111/j.1365-2362.2010.02296.x
Arquivos suplementares
