Nonlinear acoustic waves in hyperelastic rods
- 作者: Kuznecov S.V.1, Saiyan S.G.1
-
隶属关系:
- Moscow State University of Civil Engineering
- 期: 编号 2 (2025)
- 页面: 210-225
- 栏目: Articles
- URL: https://journal-vniispk.ru/1026-3519/article/view/295951
- DOI: https://doi.org/10.31857/S1026351925020129
- EDN: https://elibrary.ru/anregk
- ID: 295951
如何引用文章
详细
The excitation of a harmonic wave in a semi-infinite incompressible hyperelastic one-dimensional rod based on the Mooney-Rivlin equation of state shows the formation and propagation of shock wave fronts arising between faster and slower parts of the original harmonic wave. The observed shock wave fronts lead to the absorption of slower moving parts by faster ones, which leads to the damping of kinetic and elastic energy of deformations with the corresponding heat release. It is established that at a sufficient distance from the edge of the rod due to the attenuation of mechanical energy an acoustic black hole appears. The geometrically and physically nonlinear equations of motion are solved by an explicit Lax-Wendroff numerical integration scheme combined with the finite element method for spatial discretization.
作者简介
S. Kuznecov
Moscow State University of Civil Engineering
编辑信件的主要联系方式.
Email: kuzn-sergey@yandex.ru
俄罗斯联邦, Moscow
S. Saiyan
Moscow State University of Civil Engineering
Email: berformert@gmail.com
俄罗斯联邦, Moscow
参考
- Rankine W.J.M. On the thermodynamic theory of waves of finite disturbance // Trans. Royal Soc. 1870. V. 160. P. 277–288. https://doi.org/10.1098/rstl.1870.0015
- Vieille P. Sur les discontinuités produites par la détente brusque de gaz comprimés // Comptes Rendus de l’Académie des Sciences de Paris. 1899. V. 129. P. 1228–1230.
- Vieille P. Étude sur les rôles des discontinuités dans les phénomènes de propagation // J. Phys. Theor. Appl. 1900. V. 9. P. 621–644. https://doi.org/10.1051/jphystap:019000090062100
- Becker R. Stoßwelle und Detonation // Zeitschrift für Physik. 1922. V. 8. P. 321–362. https://doi.org/10.1007/BF01329605
- Landau L.D. On Shock Waves at Large Distances from the Place of Their Origin // Sov. Phys. J. 1945. V. 9. P. 496–500.
- Resler E.L., Lin S.C., Kantrowitz A. The production of high temperature gases in shock tubes // J. Appl. Phys. 1952. Т. 23. № 12. С. 1390–1399. https://doi.org/10.1063/1.1702080
- Truesdell C. On the viscosity of fluids according to the kinetic theory // Zeitschrift für Physik. 1952. V. 131. P. 273–289. https://doi.org/10.1007/BF01329541
- Truesdell C. On curved shocks in steady plane flow of an ideal fluid // J. Aeronaut. Sci. 1952. V. 19. № 12. P. 826–834. https://doi.org/10.2514/8.2495
- Whitham G.B. On the propagation of shock waves through regions of non-uniform area or flow // J. Fluid Mech. 1958. V. 4. № 4. P. 337–360. https://doi.org/10.1017/S0022112058000495
- Лунёв В.В. Уравнение фронта ударной волны // Известия РАН. Механика жидкости и газа. 2000. № 3. С. 159–165.
- Murata S. New exact solution of the blast wave problem in gas dynamics // Chaos, Solitons & Fractals. 2006. V. 28. № 2. P. 327–330. https://doi.org/10.1016/j.chaos.2005.05.052
- Gray J., Cui X. Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows // J. Fluid Mech. 2007. V. 579. P. 113–136. https://doi.org/10.1017/S0022112007004843
- Salas M.D. The curious events leading to the theory of shock waves // Shock Waves. 2007. V. 16. № 6. P. 477–487. https://doi.org/10.1007/s00193-007-0084-z
- Cui X. Shock waves: From gas dynamics to granular flows // Int. J. Aeronaut. Aerosp. Eng. 2019. V. 1. P. 7–9. https://doi.org/10.18689/ijae-1000102
- Hunter J.K., Keller J.B. Caustics of nonlinear waves // Wave Motion. 1987. V. 9. № 5. P. 429–443. https://doi.org/10.1016/0165-2125(87)90031-X
- Sasoh A., Ohtani T., Mori K. Pressure effect in a shock-wave plasma interaction induced by a focused laser pulse // Phys. Rev. Lett. 2006. V. 97. P. 205004. https://doi.org/10.1103/PhysRevLett.97.205004
- Znamenskaya I.A., Koroteev D.A., Lutsky A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids. 2008. V. 20. № 5. P. 056101. https://doi.org/10.1063/1.2908010
- Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 378–389. https://doi.org/10.1016/j.jappmathmech.2011.09.002
- Zhang S. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking // Physics Letters B. 2014. V. 729. P. 136–142. https://doi.org/10.1016/j.physletb.2014.01.014
- Morduchow M., Libby P.A. On the distribution of entropy through a shock wave // J. Mécanique. 1965. V. 4. P. 191–213.
- Zeldovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena. 2nd ed. New York: Academic Press, 1967.
- Ridah S. Shock waves in water // J. Appl. Phys. 1988. V. 64. № 1. P. 152–158. https://doi.org/10.1063/1.341448
- Arima T., Taniguchi S., Ruggeri T., Sugiyama T. Extended thermodynamics of dense gases // Continuum Mech. Therm. 2012. V. 24. № 4–6. P. 271–292. https://doi.org/10.1007/s00161-011-0213-x
- Velasco R.M., Garcia-Colin L.S., Uribe F.J. Entropy production: Its role in nonequilibrium thermodynamics // Entropy. 2011. № 1. V. 13. P. 82–116. https://doi.org/10.3390/e13010082
- Margolin L.G. Nonequilibrium entropy in a shock // Entropy. 2017. V. 19. № 7. P. 368. https://doi.org/10.3390/e19070368
- Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen A. Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave // Chem. Phys. Lett. 2020. V. 738. P. 100054. https://doi.org/10.1016/j.cpletx.2020.100054
- Lax P.D. The formation and decay of shock waves // Amer. Math. Monthly. 1972. V. 79. № 3. P. 227–241. https://doi.org/10.2307/2316618
- Maslov V.P., Mosolov P.P. General theory of the solutions of the equations of motion of an elastic medium of different moduli // J. Appl. Math. Mech. 1985. V. 49. № 3. P. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
- Ostrovsky L.A. Wave processes in media with strong acoustic nonlinearity // J. Acoust. Soc. Am. 1991. V. 90. № 6. P. 3332–3337. https://doi.org/10.1121/1.401444
- Dequiedt J.L., Stolz C. Propagation of a shock discontinuity in an elasto-plastic material: Constitutive relations // Arch. Mech. 2004. V. 56. № 5. P. 391–410.
- Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods // Int. J. Struct. Stab. Dyn. 2005. V. 5. № 1. P. 37–54. https://doi.org/10.1142/S0219455405001490
- Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 4464–4480. https://doi.org/10.1016/j.jsv.2012.05.022
- Radostin A., Nazarov V., Kiyashko S. Propagation of nonlinear acoustic waves in bimodular media with linear dissipation // Wave Motion. 2013. V. 50. № 2. P. 191–196. https://doi.org/10.1016/j.wavemoti.2012.08.005
- Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of sh-waves in anisotropic laminated plates // Acous. Phys. 2014. V. 60. P. 200–207. https://doi.org/10.1134/S106377101402002X
- Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., Rahimian M., Hayati Y. Coupled thermoviscoelastodynamic green’s functions for bi-material half-space // ZAMM. 2015. V. 95. № 3. P. 260–282. https://doi.org/10.1002/zamm.201200135
- Kuznetsova M., Khudyakov M., Sadovskii V. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struc. 2022. V. 29. P. 3147–3162. https://doi.org/10.1080/15376494.2021.1889725
- Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Ration. Mech. Anal. 1961. V. 8. P. 263–296. https://doi.org/10.1007/BF00277444
- Coleman B.D., Gurtin M.E., Herrera I. Waves in materials with memory. I. The velocity of one-dimensional shock and acceleration waves // Arch. Ration. Mech. Anal. 1965. V. 19. P. 1–19. https://doi.org/10.1007/BF00252275
- Goldstein R.V., Dudchenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) Model: cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. № 12. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
- Boulanger P., Hayes M.A. Finite amplitude waves in Mooney–Rivlin and Hadamard materials // Topics in Finite Elasticity / Eds. M.A. Hayes, G. Saccomandi. Wien: Springer, 2001. https://doi.org/10.1007/978-3-7091-2582-3_4
- Liu C., Cady C.M., Lovato M.L., Orler E. B. Uniaxial tension of thin rubber liner sheets and hyperelastic model investigation // J. Mater. Sci. 2015. V. 50. № 3. P. 1401–1411. https://doi.org/10.1007/s10853-014-8700-7
- Hashiguchi K. Nonlinear continuum mechanics for finite elasticity-plasticity. New York: Elsevier, 2020.
- LeVeque R.J. Numerical methods for conservation laws. Boston: Birkhäuser, 1992.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes: The art of scientific computing. 3rd ed. New York: Cambridge University Press, 2007.
- Truesdell C., Noll W. The non-linear field theories of mechanics. 3rd ed. Berlin: Springer, 2004.
- Goldstein R.V., Kuznetsov S.V. Long-wave asymptotics of lamb waves // Mechanics of Solids. 2017. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
- Kuznetsov S.V. Closed Form Analytical Solution for Dispersion of Lamb Waves in FG Plates // Wave Motion. 2019. V. 88. P. 196–204. https://doi.org/10.1016/j.wavemoti.2018.09.020
- Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves in Random and Complex Media. 2021. V. 31. № 6. P. 1540–1549. https://doi.org/10.1080/17455030.2019.1683257
- Ilyashenko A.V., Kuznetsov S.V. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
- Gurtin M.E., Williams W.O. On the first law of thermodynamics // Arch. Ration. Mech. Anal. 1971. V. 42. P. 77–92. https://doi.org/10.1007/BF00251431
- Holmes N., Belytschko T. Postprocessing of finite element transient response calculations by digital filters // Comput. Struct. 1976. V. 6. № 3. P. 211–216. https://doi.org/10.1016/0045-7949(76)90032-8
- Jerrams S.J., Bowen J. Modelling the Behaviour of rubber-like materials to obtain correlation with rigidity modulus tests // WIT Transactions on Modelling and Simulation. 1995. V. 10. P. 8. https://doi.org/10.2495/CMEM950561
- Chen J., Garcia E.S., Zimmerman S.C. Intramolecularly cross-linked polymers: from structure to function with applications as artificial antibodies and artificial enzymes // Acc. Chem. Res. 2020. V. 53. № 6. P. 1244–1256. https://doi.org/10.1021/acs.accounts.0c00178
- D’Amato M., Gigliotti R., Laguardia R. Seismic isolation for protecting historical buildings: A case study // Front. Built Environ. 2019. V. 5. P. 87. https://doi.org/10.3389/fbuil.2019.00087
补充文件
