HEAT-RESISTANT COATINGS BASED ON SILICON CARBIDE ON GRAPHITE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for forming heat-resistant silicon carbide coatings on graphite products is proposed and investigated. The coating is formed by simultaneous occurrence of several chemical reactions between the silicon melt, carbon monoxide and the near-surface region of graphite at temperatures slightly exceeding the melting point of silicon. The formed coating has a thickness of up to several millimeters, has high mechanical strength and hardness. The samples were examined by various methods, including Raman spectroscopy, SEM. Thermal resistance of the obtained coatings was studied by testing in high-enthalpy subsonic air flows. It was shown that the coatings withstand such exposure at temperatures up to 1750°C for 30 min. Mechanisms of self-healing of the coating under the influence of oxygen at high temperature were revealed.

About the authors

V. V Antipov

Saint Petersburg State Technological Institute (Technical University)

Email: sergey.a.kukushkin@gmail.com

S. S Galkin

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com

A. S Grashchenko

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com

D. M Klimov

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com

A. F Kolesnikov

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com

S. A Kukushkin

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com

A. V Osipov

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com

A. V Red'kov

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com

E. S Tepteeva

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com

A. V Chaplygin

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Author for correspondence.
Email: sergey.a.kukushkin@gmail.com

References

  1. Li J., Dunzik-Gouga M. L., Wang J. Recent advances in the treatment of irradiated graphite: A review // Ann. Nucl. Energy. 2017. V. 110. P. 140–147. https://doi.org/10.1016/j.anucene.2017.06.040
  2. Chung D.D.L. Review graphite // J. Mater. Sci. 2002. V. 37. P. 1475–1489. https://doi.org/10.1023/A:1014915307738
  3. Fallahdoost H., Nouri A., Azimi A. Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites // J. Phys. Chem. Solids. 2016. V. 93. P. 137–144. https://doi.org/10.1016/j.jpcs.2016.02.020
  4. Py X., Olives R., Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material // Int. J. Heat Mass Transfer. 2001. V. 44. № 14. P. 2727–2737. https://doi.org/10.1016/S0017-9310(00)00309-4
  5. Rozenberg A.S., Sinenko Y.A., Chukanov N.V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix // J. Mater. Sci. 1993. V. 28. P. 5528–5533. https://doi.org/10.1007/BF00367825
  6. Chen Z.B., Bian H., Hu S.P., Song X.G., Niu C.N., Duan X.K. et al. Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal // Surf. Coat. Technol. 2018. V. 348. P. 104–110. https://doi.org/10.1016/j.surfcoat.2018.05.039
  7. Cho Y.J., Summerfield A., Davies A., Cheng T.S., Smith E.F., Mellor C.J. et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy // Sci. Rep. 2016. V. 6. P. 34474. https://doi.org/10.1038/srep34474
  8. Fu Q.G., Li H.J., Shi X.H., Li K.Z., Sun G.D. Silicon carbide coating to protect carbon/carbon composites against oxidation // Scr. Mater. 2005. V. 52. № 9. P. 923–927. https://doi.org/10.1016/j.scriptamat.2004.12.029
  9. Wang R.Q., Zhu S.Z., Huang H.B., Wang Z.F., Liu Y.B., Ma Z., Qian F. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2 // Surf. Coat. Technol. 2021. V. 420. P. 127332. https://doi.org/10.1016/j.surfcoat.2021.127332
  10. Liu X.F., Huang Q.Z., Su Z.A., Jiang J.X. Preparation of SiC coating by chemical vapor reaction // J. Chin. Ceram. Soc. 2004. V. 32. № 7. P. 906–910.
  11. Kang P., Zhang B., Chen G., Wu G. Synthesis of nanostructured SiC coatings on carbon fibres by in situ reaction sintering with milled powders // Surf. Coat. Technol. 2010. V. 205. № 2. P. 294–298. https://doi.org/10.1016/j.surfcoat.2010.06.043
  12. Okuni T., Miyamoto Y., Abe H., Naito M. Joining of silicon carbide and graphite by spark plasma sintering // Ceram. Int. 2014. V. 40. № 1. P. 1359–1363. https://doi.org/10.1016/j.ceramint.2013.07.017
  13. Lee J.E., Kim B.G., Yoon J.Y., Ha M.T., Lee M.H., Kim Y. et al.The role of an SiC interlayer at a graphite–silicon liquid interface in the solution growth of SiC crystals // Ceram. Int. 2016. V. 42. № 10. P. 11611–11618. https://doi.org/10.1016/j.ceramint.2016.04.060
  14. Zhu Q., Qiu X., Ma C. Oxidation resistant SiC coating for graphite materials // Carbon. 1999. V. 37. № 9. P. 1475–1484. https://doi.org/10.1016/S0008-6223(99)00010-X
  15. Li Y., Wang Q., Fan H., Sang S., Li Y., Zhao L. Synthesis of silicon carbide whiskers using reactive graphite as template // Ceram. Int. 2014. V. 40. № 1. P. 1481–1488. https://doi.org/10.1016/j.ceramint.2013.07.032
  16. Hu L., Zou Y., Li C.H., Liu J.A., Shi Y.S. Preparation of SiC nanowires on graphite paper with silicon powder // Mater. Lett. 2020. V. 269. P. 127444. https://doi.org/10.1016/j.matlet.2020.127444
  17. Al-Ruqeishi M. S., Nor R. M., Amin Y. M., Al-Azri K. Direct synthesis of β-silicon carbide nanowires from graphite only without a catalyst // J. Alloys Compd. 2010. V. 497. № 1–2. P. 272–277. https://doi.org/10.1016/j.jallcom.2010.03.025
  18. Haibo O., Hejun L., Lehua Q., Zhengjia L., Jian W., Jianfeng W. Synthesis of a silicon carbide coating on carbon fibers by deposition of a layer of pyrolytic carbon and reacting it with silicon monoxide // Carbon. 2008. V. 46. № 10. P. 1339–1344. https://doi.org/10.1016/j.carbon.2008.05.017
  19. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Formation of composite SiC-C coatings on graphite via annealing Si-melt in CO // Surf. Coat. Technol. 2021. V. 423. P. 127610. https://doi.org/10.1016/j.surfcoat.2021.127610
  20. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Mechanical properties of a SiC composite coating on graphite obtained by the atomic substitution method // Letters to the Journal of Technical Physics. 2021. V. 47. No. 20. P. 7–10. https://doi.org/10.21883/PJTF.2021.20.51605.18918 [in Russian].
  21. Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review // Phys. Solid State. 2014. V. 56. P. 1507–1535. https://doi.org/10.1134/S1063783414080137
  22. Kukushkin S.A., Osipov A.V. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles // J. Appl. Phys. 2013. V. 113. № 2. P. 024909. https://doi.org/10.1063/1.4773343
  23. Kukushkin S.A., Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. P. 313001. https://doi.org/10.1088/0022-3727/47/31/313001
  24. Kukushkin S.A., Osipov A.V. New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment // Phys. Solid State. 2008. V. 50. P. 1238. https://doi.org/10.1134/S1063783408070081
  25. Gordeev A.N., Kolesnikov A.F. New modes of plasma flow and heat transfer in the high-frequency induction plasma torch VGU-4 // Physicochemical kinetics in gas dynamics. 2008. № 7. P. 18–18. [in Russian].
  26. Sevastyanov V.G., Simonenko E.P., Gordeev A.N., Simonenko N.P., Kolesnikov A.F., Papynov E.K. et al. Behavior of ceramic material HfB2-SiC (45 vol.%) in a flow of dissociated air and analysis of the emission spectrum of the boundary layer above its surface // Russ. Journal of Inorganic Chemistry. 2015. V. 60. No. 11. P. 1485–1485. https://doi.org/10.7868/S0044457X15110136 [in Russian].
  27. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Lysenkov A.S., Nagornov I.A. et al. Modification of UHTC composition HfB2–30% SiC with graphene (1 vol. %) and its effect on behavior in supersonic air flow // Russian Journal of Inorganic Chemistry. 2021. V. 66. № 9. P. 1314–1325. https://doi.org/10.31857/S0044457X21090142 [in Russian].
  28. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Papynov E.K., Shichalin O.O. et al. Effect of supersonic nitrogen flow on ceramic material Ta4HfC5–SiC // Journal of Inorganic Chemistry. 2023. V. 68. No. 4. P. 551–559. https://doi.org/10.31857/S0044457X22602358 [in Russian].
  29. Tuinstra F., Koenig J.L. Raman spectrum of graphite // J. Chem. Phys. 1970. V. 53. № 3. P. 1126–1130. https://doi.org/10.1063/1.1674108
  30. Nakashima S., Harima H. Raman investigation of SiCpolytypes // Phys. Status Solidi A. 1997. V. 162. № 1. P. 39–64. https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
  31. Kitaev Yu.E., Kukushkin S.A., Osipov A.V., Redkov A.V. New trigonal (rhombohedral) phase of SiC: abinitio calculations, symmetry analysis and Raman spectra // FTT. 2018. Issue 10. P. 2030–2035. https://doi.org/10.21883/FTT.2018.10.46534.107 [in Russian].
  32. Perova T.S., Kukushkin S.A., Osipov A.V. Raman microscopy and imaging of semiconductor films grown on SiChybrid substrate fabricated by the method of coordinated substitution of atoms on silicon // Handbook of silicon carbide materials and devices / Ed. Z.C. Feng. Boca Raton: CRC Press, 2022. P. 327–372. https://doi.org/10.1201/9780429198540
  33. Bates J.B. Raman spectra of α and βcristobalite // J. Chem. Phys. 1972. V. 57. № 9. P. 4042–4047. https://doi.org/10.1063/1.1678878
  34. Redkov A.V., Grashchenko A.S., Kukushkin S.A., Osipov A.V., Kotlyar K.P., Likhachev A.I. et al. Studying evolution of the ensemble of micropores in a SiC/Si structure during its growth by the method of atom substitution // Phys. Solid State. 2019. V. 61. P. 299–306. https://doi.org/10.1134/S1063783419030272
  35. Anisimov K.S., Malkov A.A., Malygin A.A. Mechanism of thermal oxidation of silicon carbide modified by chromium oxide structures // Russ. J. Gen. Chem. 2014. V. 84. P. 2375–2381. https://doi.org/10.1134/S1070363214120032
  36. Gorsky V.V., Gordeev A.N., Dudkina T.I. Aerothermochemical destruction of silicon carbide washed by a high-temperature air flow // TVT. 2012. V. 50. Issue 5. P. 692–699. [in Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».