Dynamics of the energy center of a long-wave low-amplitude disturbance in an anharmonic one-dimensional lattice
- 作者: Shcherbinin S.A.1,2
-
隶属关系:
- Peter the Great Saint Petersburg Polytechnical University
- Institute for Problems in Mechanical Engineering RAS
- 期: 编号 2 (2025)
- 页面: 196-209
- 栏目: Articles
- URL: https://journal-vniispk.ru/1026-3519/article/view/295950
- DOI: https://doi.org/10.31857/S1026351925020111
- EDN: https://elibrary.ru/anpotv
- ID: 295950
如何引用文章
详细
The dynamics of a disturbance with finite energy in an infinite monatomic nonlinear one-dimensional lattice are analyzed. Based on the energy dynamics approach proposed earlier, we focus on such disturbance spatial characteristic as the position of its energy center. Restricting our analysis to long-wave low-amplitude disturbances, we investigate the dynamics of the α-FPU chain using its continuous version described by the KdV equation. We establish a connection of the Lagrangian and the energy of the original chain with the two conserving quantities of the KdV equation. Using these two quantities and the known properties of the KdV equation, we propose a method for determining the velocity of the energy center of the disturbance at large times based on the initial conditions.
全文:

作者简介
S. Shcherbinin
Peter the Great Saint Petersburg Polytechnical University; Institute for Problems in Mechanical Engineering RAS
编辑信件的主要联系方式.
Email: stefanshcherbinin@gmail.com
俄罗斯联邦, Saint Petersburg; Saint Petersburg
参考
- Achenbach J.D. Wave propagation in elastic solids. North Holland Series in Applied Mathematics and Mechanics, vol. 16. Amsterdam: North-Holland Publishing Company; New York: American Elsevier, 1973. 425 p.
- Whitham G.B. Linear and Nonlinear Waves. New Jersey: John Wiley and Sons, 1999. 660 p.
- Mejia-Monasterio C., Politi A., Rondoni, L. Heat flux in one-dimensional systems // Phys. Rev. E. 2019. V. 100. № 5. P. 032139. https://doi.org/10.1103/PhysRevE.100.032139
- Kaviany M. Heat transfer physics. 2nd ed. New York: Cambridge University Press, 2014. 765 p.
- Babich V., Kiselev A. Elastic Waves: High Frequency Theory. 1st ed. New York: Chapman and Hall/CRC, 2018. 306 p.
- Sheriff R.E., Geldart L.P. Exploration Seismology. 2nd ed. Cambridge: Cambridge University Press, 1995, 592 p.
- Guo Y., Wang M. Phonon hydrodynamics and its applications in nanoscale heat transport // Phys. Rep. 2015. V. 595. P. 1. https://doi.org/10.1016/j.physrep.2015.07.003
- Kuzkin V.A., Krivtsov A.M. Unsteady ballistic heat transport: linking lattice dynamics and kinetic theory // Acta Mechanica. 2021. V. 232. № 5. P. 1983.
- Krivtsov A.M. Dynamics of matter and energy // ZAMM. 2023. V. 103. № 4. P. e202100496. https://doi.org/10.1002/zamm.202100496
- Baimova J.A., Bessonov N.M., Krivtsov A.M. Motion of localized disturbances in scalar harmonic lattices // Phys. Rev. E. 2023. V. 107. № 6. P. 065002. https://doi.org/10.1103/PhysRevE.107.065002
- Kuzkin V.A. Acoustic transparency of the chain-chain interface // Phys. Rev. E. 2023. V. 107. № 6. P. 065004. https://doi.org/10.1103/PhysRevE.107.065004
- Deen W.M. Analysis of Transport Phenomena. NewYork: Oxford University Press, 1998. 576 p.
- Shcherbinin S.A., Krivtsov A.M. Energy dynamics of long-wave low-amplitude disturbances in an anharmonic one-dimensional lattice // Under review
- Boussinesq J. Essai sur la theorie des eaux courantes // Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France. 1877. V. 23. P. 1–680.
- Miles J.W. The Korteweg-de Vries equation: a historical essay// Journal of Fluid Mechanics. 1981. V. 106. P. 131. https://doi.org/10.1017/S0022112081001559
- Darrigo O. Joseph Boussinesq’s Legacy in fluid mechanics // Comptes Rendus Mécanique. 2017. V. 345. № 7. P. 427. https://doi.org/10.1016/j.crme.2017.05.008
- Korteweg D.J., de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895. V. 39. № 240. P. 422. https://doi.org/10.1080/14786449508620739
- Miura R.M., Gardner C.S., Kruskal M.D. Korteweg‐de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 1968. V. 9. № 8. P. 1204. https://doi.org/10.1063/1.1664701
- Schneider G., Wayne C.E. Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi–Pasta–Ulam model // International Conference on Differential Equations. V. 1, 2 (Berlin, 1999) 2000. P. 390.
- Hong Y., Kwak C., Yang C. On the Korteweg–de Vries Limit for the Fermi–Pasta–Ulam System // Archive for Rational Mechanics and Analysis. 2021. V. 240. P. 1091. https://doi.org/10.1007/s00205-021-01629-4.
- Karpman V.I. Non-Linear Waves in Dispersive Media. Pergamon press, 1975. 198 p.
- Baholdin I.B. Non-dissipative discontinuities in continuum mechanics. M: Physmathlit 2004. 320 p. [In Russian].
补充文件
