Mathematical model of liver cirrhosis formation during morphological and molecular-genetic preclinical studies
- Authors: Lebedeva E.I.1, Shchastniy A.T.1, Babenka A.S.2, Martinkov V.N.3, Zinovkin D.A.4, Nadyrov E.A.4
-
Affiliations:
- Vitebsk State Order of Peoples’ Friendship Medical University
- Belarusian State Medical University
- Republican Research Centre for Radiation Medicine and Human Ecology
- Gomel State Medical University
- Issue: Vol 162, No 2 (2024)
- Pages: 140-153
- Section: Original Study Articles
- URL: https://journal-vniispk.ru/1026-3543/article/view/272638
- DOI: https://doi.org/10.17816/morph.632588
- ID: 272638
Cite item
Abstract
BACKGROUND: Currently, researchers describe challenges in developing new treatments for fibrosis and cirrhosis: poor quality of preclinical models, insufficient trial duration, and lack of markers of therapeutic response. A separate task is to standardize the process of liver cirrhosis formation in preclinical trials, which is necessary to obtain accurate quantitative estimates in a short timeframe.
AIM: This study aimed to develop a mathematical model for the formation of liver cirrhosis during preclinical trials.
MATERIALS AND METHODS: Liver fibrosis and cirrhosis were induced in male Wistar rats using freshly prepared thioacetamide solution for 17 weeks. The area of connective tissue was determined as a percentage of the image area. The area of interlobular veins was measured in µm2. The numbers of cells expressing the FAP marker and the α-SMA marker were counted. The level of mRNA expression of the Vegfa and Yap1 genes was assessed by real-time polymerase chain reaction. A mathematical model for classifying observations into stages was constructed using multiple logistic regression with stepwise selection of predictors, followed by calculation of sensitivity, specificity, and area under the curve with a 95% confidence interval based on ROC analysis.
RESULTS: As a result of the analysis, a mathematical model of liver cirrhosis formation was developed. The model is based on the values of two indicators: FAP+ cells and Yap1 mRNA and demonstrated good quality. The resulting value of the area under the ROC curve of 0.883 suggests good results for classifying cases.
CONCLUSIONS: The mathematical model makes it possible to differentiate the stage of liver cirrhosis from the stage of fibrosis during preclinical studies. It provides a foundation for studying the pathogenesis of liver fibrosis and cirrhosis, identifying new potential molecular targets for antifibrotic therapy, and reducing the number of expensive, labor-intensive laboratory tests.
Full Text
##article.viewOnOriginalSite##About the authors
Elena I. Lebedeva
Vitebsk State Order of Peoples’ Friendship Medical University
Email: lebedeva.ya-elenale2013@yandex.ru
ORCID iD: 0000-0003-1309-4248
SPIN-code: 4049-3213
Cand. Sci. (Biology), Assistant Professor
Belarus, 27 Frunze avenue, 210009 VitebskAnatoliy T. Shchastniy
Vitebsk State Order of Peoples’ Friendship Medical University
Email: rectorvsmu@gmail.com
ORCID iD: 0000-0003-2796-4240
SPIN-code: 3289-6156
MD, Dr. Sci. (Medicine), Professor
Belarus, 27 Frunze avenue, 210009 VitebskAndrei S. Babenka
Belarusian State Medical University
Email: labmdbt@gmail.com
ORCID iD: 0000-0002-5513-970X
SPIN-code: 9715-4070
Cand. Sci. (Chemistry), Assistant Professor
Belarus, MinskVictor N. Martinkov
Republican Research Centre for Radiation Medicine and Human Ecology
Email: martinkov@rcrm.by
ORCID iD: 0000-0001-7029-5500
SPIN-code: 4319-8597
Cand. Sci. (Biology), Assistant Professor
Belarus, GomelDmitry A. Zinovkin
Gomel State Medical University
Email: zinovkin_da@gsmu.by
ORCID iD: 0000-0002-3808-8832
SPIN-code: 1531-9214
Cand. Sci. (Biology), Assistant Professor
Belarus, GomelEldar A. Nadyrov
Gomel State Medical University
Author for correspondence.
Email: nadyrov2006@rambler.ru
ORCID iD: 0000-0002-0896-5611
SPIN-code: 8176-2029
MD, Cand. Sci. (Medicine), Assistant Professor
Belarus, GomelReferences
- Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis — aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388–398. doi: 10.1038/s41575-023-00759-2
- Jangra A, Kothari A, Sarma P, et al. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. doi: 10.3390/cells11091500
- Cakaloglu Y. Alcohol-related medicosocial problems and liver disorders: Burden of alcoholic cirrhosis and hepatocellular carcinoma in Turkiye. Hepatol Forum. 2023;4(1):40–46. doi: 10.14744/hf.2022.2022.0045
- Pei Q, Yi Q, Tang L. Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 2023;24(11):9671. doi: 10.3390/ijms24119671
- Liu C, Hou X, Mo K, et al. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal. 2022;36(10):e24658. doi: 10.1002/jcla.24658
- Guindi M. Liver fibrosis: the good, the bad, and the patchy-an update. Hum Pathol. 2023;141:201–211. doi: 10.1016/j.humpath.2023.01.002
- Kolaric TO, Kuna L, Covic M, et al. Preclinical models and promising pharmacotherapeutic strategies in liver fibrosis: an update. Curr Issues Mol Biol. 2023;45(5):4246–4260. doi: 10.3390/cimb45050270
- Krylov DP, Rodimova SA, Karabut MM, et al. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tehnologii v medicine. 2023;15(4):65. doi: 10.17691/stm2023.15.4.06
- Lee HJ, Mun SJ, Jung CR, et al. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng. 2023;120(5):1241–1253. doi: 10.1002/bit.28333
- Lee YS, Seki E. In vivo and In vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol Gastroenterol Hepatol. 2023;16(3):355–367. doi: 10.1016/j.jcmgh.2023.05.010
- Lebedeva EI, Shchastniy AT, Babenka AS. Model of toxic fibrosis in Wistar rats: morphological and molecular-genetic parameters of the transition point to cirrhosis. Genes & cells. 2023;18(3):219–234. EDN: HTSXYA doi: 10.23868/gc546031
- Krasochko PA, Shchastniy AT, Lebedeva EI, et al. Methodological recommendations for creating an experimental model of toxic fibrosis and cirrhosis induced by thioacetamide. Minsk: Republican Unitary Enterprise “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”; 2021. 13 p. (In Belarus.) E DN: ZNOOHG
- Lebedeva EI, Krasochko PA, Shchastniy AT, et al. Recommendations for assessing the progression and regression of toxic liver fibrosis in preclinical studies. Minsk: “Institute of Experimental Veterinary Medicine named after. S.N. Vyshelesskogo”, 2023. 8 p. (In Belarus.) EDN: LSMJUD
- Lay AJ, Zhang HE, McCaughan GW, Gorrell MD. Fibroblast activation protein in liver fibrosis. Front Biosci (Landmark Ed). 2019;24(1):1–17. doi: 10.2741/4706
- Yang AT, Kim YO, Yan XZ, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005
- Shi Y, Kong Z, Liu P, et al. Oncogenesis, microenvironment modulation and clinical potentiality of fap in glioblastoma: lessons learned from other solid tumors. Cells. 2021;10(5):1142. doi: 10.3390/cells10051142
- Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344
- Lin Y, Dong MQ, Liu ZM, et al. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 2022;76(3):660–675. doi: 10.1002/hep.32299
- Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020:78:153294. doi: 10.1016/j.phymed.2020.153294
- Dai Y, Hao P, Sun Z, et al. Liver knockout YAP gene improved insulin resistance-induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. doi: 10.1530/JOE-20-0561
- Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol. 2022;600(8):1825–1837. doi: 10.1113/JP281061
- O’Hara SP, LaRusso NF. Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 2022;76(5):1240–1242. doi: 10.1002/hep.32528
- Kim HY, Sakane S, Eguileor A, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2023; 17(1):93–106. doi: 10.1016/j.jcmgh.2023.09.008
- Wu Y, Li Z, Xiu AY, et al. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Devel Ther. 2019;13:2667–2676. doi: 10.2147/DDDT.S210797
- Sato K, Marzioni M, Meng F. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology. 2019;69(1):420–430. doi: 10.1002/hep.30150 Corrected and republished from: Hepatology. 2019;70(3):1089. doi: 10.1002/hep.30878
- Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular mechanisms of liver fibrosis. Front Pharmacol. 2021;12:671640. doi: 10.3389/fphar.2021.671640
- Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(3):217–233. doi: 10.1080/17474124.2021.1842732
- Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. doi: 10.1002/jcb.30344
- Zhang W, Han L, Wen Y, et al. Electroacupuncture reverses endothelial cell death and promotes angiogenesis through the VEGF/Notch signaling pathway after focal cerebral ischemia-reperfusion injury. Brain Behav. 2023;13(3):e2912. doi: 10.1002/brb3.2912
- Du K, Maeso-Díaz R, Oh SH, et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology. 2023;77(6):1998–2015. doi: 10.1097/HEP.0000000000000326
Supplementary files
