缺氧条件下的线粒体动态变化
- 作者: Skvortsova K.A.1,2, Baranich T.I.1,2, Omarova Z.M.2, Kharlamov D.A.3, Bicherova I.A.2, Glinkina V.V.2, Sukhorukov V.S.1,2
-
隶属关系:
- Research Center of Neurology
- The Russian National Research Medical University named after N.I. Pirogov
- V.F. Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
- 期: 卷 162, 编号 4 (2024)
- 页面: 454-463
- 栏目: Reviews
- URL: https://journal-vniispk.ru/1026-3543/article/view/288237
- DOI: https://doi.org/10.17816/morph.634229
- ID: 288237
如何引用文章
详细
线粒体是一种高度动态的细胞器,能够根据细胞的代谢需求发生分裂或融合。这些变化统称为“线粒体动态”,决定了细胞中线粒体的数量、形态和大小。近年来,在正常及病理条件下调控线粒体动态的机制引起了广泛关注。研究发现,线粒体膜的分裂与融合由一系列特异性调控蛋白介导,这些蛋白根据细胞的能量需求被激活。线粒体分裂与融合过程的失衡会导致细胞代谢紊乱、功能障碍以及适应能力下降。关于缺氧对线粒体动态影响的研究不断增多,通常集中于急性缺氧状态下线粒体分裂与融合相关调控蛋白水平的变化。
本研究的目的是综述文献中关于缺氧状态下线粒体动态在胚胎组织与成熟组织中的变化,并分析在低氧环境下进一步探索其调控机制的研究前景。
作者简介
Kristina A. Skvortsova
Research Center of Neurology; The Russian National Research Medical University named after N.I. Pirogov
编辑信件的主要联系方式.
Email: Skvortsova_ka@mail.ru
ORCID iD: 0009-0000-2413-0262
SPIN 代码: 1350-7458
俄罗斯联邦, 5 Obukha aly, bldg 2, 105064, Moscow; Moscow
Tatiana I. Baranich
Research Center of Neurology; The Russian National Research Medical University named after N.I. Pirogov
Email: baranich_tatyana@mail.ru
ORCID iD: 0000-0002-8999-9986
SPIN 代码: 9325-2229
Cand. Sci. (Medicine)
俄罗斯联邦, 5 Obukha aly, bldg 2, 105064, Moscow; MoscowZainab M. Omarova
The Russian National Research Medical University named after N.I. Pirogov
Email: Zaika540000@mail.ru
ORCID iD: 0009-0004-6719-4775
俄罗斯联邦, Moscow
Dmitry A. Kharlamov
V.F. Voyno-Yasenetsky Scientific and Practical Center of Specialized Medical Care for Children
Email: dmitoch@gmail.ru
ORCID iD: 0009-0007-5533-084X
SPIN 代码: 5624-3488
Cand. Sci. (Medicine)
俄罗斯联邦, MoscowIrina A. Bicherova
The Russian National Research Medical University named after N.I. Pirogov
Email: raddp8@yandex.ru
ORCID iD: 0009-0007-1454-0461
SPIN 代码: 4817-2690
Cand. Sci. (Medicine)
俄罗斯联邦, MoscowValeria V. Glinkina
The Russian National Research Medical University named after N.I. Pirogov
Email: vglinkina@mail.ru
ORCID iD: 0000-0001-8708-6940
SPIN 代码: 4425-5052
Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowVladimir S. Sukhorukov
Research Center of Neurology; The Russian National Research Medical University named after N.I. Pirogov
Email: vsukhorukov@gmail.com
ORCID iD: 0000-0002-0552-6939
SPIN 代码: 1112-4406
Dr. Sci. (Medicine), Professor
俄罗斯联邦, 5 Obukha aly, bldg 2, 105064, Moscow; Moscow参考
- Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab. 2023;5(4):546–562. doi: 10.1038/s42255-023-00783-1
- Lewis MR, Lewis WH. Mitochondria in tissue culture. Science. 1914;39(1000):330–333. doi: 10.1126/science.39.1000.330
- Sukhorukov VS. Some biomedical aspects of mitochondrial dynamics. In: Questions of morphology of the XXI century: Proceedings of the 26th All-Russian Scientific Conference, Saint Petersburg, 16-17 May 2024. Saint Petersburg: Limited Liability Company «Izdatel’stvo DEAN», 2024. P. 62–75. EDN: RNJJGD
- Sukhorukov VS, Baranich TI, Egorova AV, et al. Mitochondrial dynamics and the significance of its disturbances in the development of childhood diseases. Part I. Physiological and neurological aspects. Russian Bulletin of Perinatology and Pediatrics. 2024;69(1):25–33. doi: 10.21508/1027-4065-2024-69-1-25-33 EDN: VUWYOY
- Sukhorukov VS, Baranich TI, Egorova AV, et al. Mitochondrial dynamics and the significance of its disturbances in the development of childhood diseases. Part II. Cardiological and endocrinological aspects. Russian Bulletin of Perinatology and Pediatrics. 2024;69(2):12–18. doi: 10.21508/1027-4065-2024-69-2-12-18 EDN: HDSWRI
- Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021;35(6):e21620. doi: 10.1096/fj.202100067R
- Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther. 2023;8(1):333. doi: 10.1038/s41392-023-01547-9
- Sun F, Fang M, Zhang H, et al. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys. 2024;82(2):435–455. doi: 10.1007/s12013-024-01245-5
- Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62(3):341–360. doi: 10.1042/EBC20170104
- Kleele T, Rey T, Winter J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature. 2021;593(7859):435–439. doi: 10.1038/s41586-021-03510-6
- Breitzig MT, Alleyn MD, Lockey RF, Kalliputi N. A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. Am J Physiol Cell Physiol. 2018;315(1):C80–C90. doi: 10.1152/ajpcell.00042.2018
- Murata D, Arai K, Iijima M, Sesaki H. Mitochondrial division, fusion and degradation. J Biochem. 2020;167(3):233–241. doi: 10.1093/jb/mvz106
- Sukhorukov VS, Voronkova AS, Baranich TI, et al. Molecular Mechanisms of Interactions between Mitochondria and the Endoplasmic Reticulum: A New Look at How Important Cell Functions are Supported. Molecular Biology. 2022;56(1):59–71. doi: 10.1134/S0026893322010071 EDN: GTPNFD
- Song Z, Chen H, Fiket M, et al. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–755. doi: 10.1083/jcb.200704110
- Wakabayashi J, Zhang Z, Wakabayashi N, et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol. 2009;186(6):805–816. doi: 10.1083/jcb.200903065
- Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200. doi: 10.1083/jcb.200211046
- Hamze C. Mitofusin 1 and Mitofusin 2 Function in the Context of Brain Development [dissertation]. Ottawa; 2011. Available from: http://dx.doi.org/10.20381/ruor-4991935d-4688-a8af-6a40c846ed67
- Chen H, Ren S, Clish C, et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J Cell Biol. 2015;211(4):795–805. doi: 10.1083/jcb.201507035
- Liu X, Song L, Yu J, et al. Mdivi-1: a promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases. Histol Histopathol. 2022;37(6):505–512. doi: 10.14670/HH-18-443
- Ding J, Zhang Z, Li S, et al. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys. 2022;718:109147. doi: 10.1016/j.abb.2022.109147
- Li L, Mu Z, Liu P, et al. Mdivi-1 alleviates atopic dermatitis through the inhibition of NLRP3 inflammasome. Exp Dermatol. 2021;30(12):1734–1744. doi: 10.1111/exd.14412
- Su ZD, Li CQ, Wang HW, et al. Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviates atherosclerosis through the modulation of M1 polarization. J Transl Med. 2023;21(1):427. doi: 10.1186/s12967-023-04270-9
- Fedorova EN, Egorova AV, Voronkov DN et al. DRP1 Regulation as a Potential Target in Hypoxia-Induced Cerebral Pathology. J Mol Pathol. 2023;4(4):333–348. doi: 10.3390/jmp4040027
- Xin Y, Zhao L, Peng R. HIF-1 signaling: an emerging mechanism for mitochondrial dynamics. J Physiol Biochem. 2023;79(3):489–500. doi: 10.1007/s13105-023-00966-0
- Baranich TI, Voronkova AS, Anufriev PL, et al. Hypoxia-inducible Factors–Their Regulation and Function in Neural Tissue. Human Physiology. 2020;46(8):895–899. doi: 10.1134/S0362119720080022
- Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors--similar but not identical. Mol Cells. 2010;29(5):435–442. doi: 10.1007/s10059-010-0067-2
- Yang C, Zhong ZF, Wang SP, et al. HIF-1: structure, biology and natural modulators. Chin J Nat Med. 2021;19(7):521–527. doi: 10.1016/S1875-5364(21)60051-1
- Zhao JF, Rodger CE, Allen GFG., et al. HIF1α-dependent mitophagy facilitates cardiomyoblast differentiation. Cell Stress. 2020;4(5):99–113. doi: 10.15698/cst2020.05.220
- Fajersztajn L, Veras MM. Hypoxia: From Placental Development to Fetal Programming. Birth Defects Res. 2017;109(17):1377–1385. doi: 10.1002/bdr2.1142
- Gillmore T, Farrell A, Alahari S. et al. Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia: consequences for trophoblast mitochondrial homeostasis. Cell Death Dis. 2022;13(2):191. doi: 10.1038/s41419-022-04641-y
- Wang B, Zeng H, Liu J, Sun M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front Neurosci. 2021;15:755554. doi: 10.3389/fnins.2021.755554
- Quebedeaux TM, Song H, Giwa-Otusajo J, Thompson LP. Chronic Hypoxia Inhibits Respiratory Complex IV Activity and Disrupts Mitochondrial Dynamics in the Fetal Guinea Pig Forebrain. Reprod Sci. 2022;29(1):184–192. doi: 10.1007/s43032-021-00779-w
- Han J, Tao W, Cui W, Chen J. Propofol via Antioxidant Property Attenuated Hypoxia-Mediated Mitochondrial Dynamic Imbalance and Malfunction in Primary Rat Hippocampal Neurons. Oxid Med Cell Longev. 2022;2022:6298786. doi: 10.1155/2022/6298786
- Jain K, Prasad D, Singh SB, Kohli E. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus. Neurol Res Int. 2015;2015:742059. doi: 10.1155/2015/742059
- Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol. 2011;1(1):295–317. doi: 10.1002/cphy.c100026
- Chen X, Yao JM, Fang X, et al. Hypoxia promotes pulmonary vascular remodeling via HIF-1α to regulate mitochondrial dynamics. J Geriatr Cardiol. 2019;16(12):855–871. doi: 10.11909/j.issn.1671-5411.2019.12.003
- Nishimura A, Shimauchi T, Tanaka T, et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal. 2018;11(556):eaat5185. doi: 10.1126/scisignal.aat5185
- Ong SB, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–2022. doi: 10.1161/CIRCULATIONAHA.109.906610
- Sharp WW, Fang YH, Han M, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014;28(1):316–326. doi: 10.1096/fj.12-226225
- Piao L, Fang YH, Fisher M, et al. Dynamin-related protein 1 is a critical regulator of mitochondrial calcium homeostasis during myocardial ischemia/reperfusion injury. FASEB J. 2024;38(1):e23379. doi: 10.1096/fj.202301040RR
- Niu X, Zhang J, Hu S, et al. lncRNA Oip5-as1 inhibits excessive mitochondrial fission in myocardial ischemia/reperfusion injury by modulating DRP1 phosphorylation. Cell Mol Biol. 2024;29(1):72. doi: 10.1186/s11658-024-00588-4
- Kirshenbaum LA, Dhingra R, Bravo-Sagua R, Lavandero S. DIAPH1-MFN2 interaction decreases the endoplasmic reticulum-mitochondrial distance and promotes cardiac injury following myocardial ischemia. Nat Commun. 2024;15(1):1469. doi: 10.1038/s41467-024-45560-0
- Madhu V, Boneski PK, Silagi E, et al. Hypoxic Regulation of Mitochondrial Metabolism and Mitophagy in Nucleus Pulposus Cells Is Dependent on HIF-1α-BNIP3 Axis. J Bone Miner Res. 2020;35(8):1504–1524. doi: 10.1002/jbmr.4019
- Sun H, Li X, Chen X, et al. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. J Neuroinflammation. 2022;19(1):213. doi: 10.1186/s12974-022-02542-7
补充文件
