Клеточная коррекция радиационного поражения в эксперименте
- Авторы: Криштоп В.В.1, Пащенко П.С.1, Анисин А.В.1, Спирина Т.С.2,3, Гайворонская М.Г.2,3
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Санкт-Петербургский государственный университет
- Национальный медицинский исследовательский центр им. В.А. Алмазова
- Выпуск: Том 164, № 1 (2026)
- Страницы: 16-36
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/1026-3543/article/view/373763
- DOI: https://doi.org/10.17816/morph.643206
- EDN: https://elibrary.ru/IWAABY
- ID: 373763
Цитировать
Аннотация
Применение стволовых клеток и внеклеточных везикул рассматривается как перспективное направление в военной и гражданской медицине при лечении острой лучевой болезни, что обусловлено их выраженными гистофизиологическими эффектами. Цель данного обзора — обобщить экспериментальные данные о возможностях использования стволовых клеток и их внеклеточных везикул при радиационном поражении. Проведён систематический обзор эффективности трансплантации различного типа клеток (мезенхимальных, гемопоэтических и нейральных стволовых клеток, а также клеток-предшественниц) и внеклеточных везикул при радиационном поражении в эксперименте. В анализ включены 13 русскоязычных и 96 иностранных публикаций за период с января 2002 по апрель 2024 г.
В обзоре представлена информация о клеточных эффектах при лечении лучевой болезни в эксперименте и при местном лучевом поражении в дозах от 1 Гр до 110 Гр. Обобщены данные о терапевтическом действии стволовых клеток и внеклеточных везикул, связанном с воздействием на ниши стволовых клеток. Показано, что основным механизмом такой терапии является паракринный эффект, опосредованный внеклеточными везикулами. Паракринное действие способствует увеличению выживаемости эндогенных стволовых клеток и снижает уровень апоптоза в них. После применения такой терапии продемонстрировано увеличение выживаемости животных при костномозговой и кишечной формах лучевой болезни и более быстрое восстановление при местном лучевом поражении.
В последние десятилетия в фокусе внимания исследователей находится трансплантация мезенхимальных стромальных клеток, которые обладают эффективностью по отношению к гематологическому, кишечному и церебральному синдромам острой лучевой болезни. Их эффект реализуется через снижение воспаления и коррекцию микроокружения эндогенных стволовых клеток, что увеличивает их выживаемость и снижает уровень апоптоза.
Ключевые слова
Об авторах
Владимир Владимирович Криштоп
Военно-медицинская академия им. С.М. Кирова
Email: chrishtop@mail.ru
ORCID iD: 0000-0002-9267-5800
SPIN-код: 3734-5479
кандидат медицинских наук
Россия, Санкт-ПетербургПавел Степанович Пащенко
Военно-медицинская академия им. С.М. Кирова
Email: pashchenkops@mail.ru
ORCID iD: 0009-0007-4987-9262
SPIN-код: 1035-3261
доктор медицинских наук, профессор
Россия, Санкт-ПетербургАлексей Владимирович Анисин
Военно-медицинская академия им. С.М. Кирова
Email: av.anisin@mail.ru
кандидат медицинских наук
Россия, Санкт-ПетербургТатьяна Сергеевна Спирина
Санкт-Петербургский государственный университет; Национальный медицинский исследовательский центр им. В.А. Алмазова
Автор, ответственный за переписку.
Email: ScoX1@rambler.ru
ORCID iD: 0000-0002-1188-7204
SPIN-код: 1048-9599
кандидат биологических наук
Россия, Санкт-Петербург; Санкт-ПетербургМария Георгиевна Гайворонская
Санкт-Петербургский государственный университет; Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: solnushko12@mail.ru
ORCID iD: 0000-0003-4992-9702
SPIN-код: 2357-5440
доктор медицинских наук, доцент
Россия, Санкт-Петербург; Санкт-ПетербургСписок литературы
- Karamullin MA, Chepur SV, Samokhvalov IM, et al. Clinical guidelines for prevention, diagnostics, treatment and recovery from acute radiation injuries: Classification and basic pathology. Bulletin of the Russian Military Medical Academy. 2024;26(1):87–100. doi: 10.17816/brmma595865 EDN: CWKBIF
- Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res. 2018;5(1):7. doi: 10.1186/s40779-018-0154-9 EDN: UUJVTU
- Samoylov AS, Konchalovsky MV, Bushmanov AYu, et al. Recommendations for the diagnosis and treatment of bone marrow form of acute radiation syndrome. Russian Journal of Hematology and Transfusiology. 2023;68(1):98–128. doi: 10.35754/0234-5730-2023-68-1-98-128 EDN: NONQCI
- Thierry D, Bertho JM, Chapel A, Gourmelon P. Cell therapy for the treatment of accidental radiation overexposure. British Journal of Radiology. 2005;78(suppl 27):175–179. doi: 10.1259/bjr/90209767
- Singh VK., Brown DS, Kao TC, Seed TM Preclinical development of a bridging therapy for radiation casualties. Exp Hematol. 2010;38(1):61–70. doi: 10.1016/j.exphem.2009.10.008
- Qian L, Cen J. Hematopoietic stem cells and mesenchymal stromal cells in acute radiation syndrome. Oxid Med Cell Longev. 2020;2020:8340756. doi: 10.1155/2020/8340756 EDN: ZVJLWZ
- Lange C. Mesenchymal stromal cells protect from acute radiation syndromes: Insights into possible mechanisms. Medical-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2015;1:58–70. doi: 10.25016/2541-7487-2015-0 EDN: TZKLQN
- McGuirk JP, Smith JR, Divine CL, et al. Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host capacity. Pharmaceuticals (Basel). 2015;8(2):196–220. doi: 10.3390/ph8020196
- Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
- Hérodin F, Drouet M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 2005;33(10):1071–1080. doi: 10.1016/j.exphem.2005.04.007 EDN: MJGAYN
- Singh VK, Christensen J, Fatanmi OO, et al. Myeloid progenitors: a radiation countermeasure that is effective when initiated days after irradiation. Radiat Res. 2012;177(6):781–791. doi: 10.1667/rr2894.1
- Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
- Singh VK, Wise SY, Fatanmi OO, et al. Progenitors mobilized by gamma-tocotrienol as an effective radiation countermeasure. PLoS One. 2014;9(11):e114078. doi: 10.1371/journal.pone.0114078 EDN: YCJMTB
- Singh VK, Kulkarni S Fatanmi OO, et al. Radioprotective efficacy of Gamma-Tocotrienol in nonhuman primates. Radiat Res. 2016;185(3):285–298. doi: 10.1667/RR14127.1
- Singh VK, Seed TM. Development of gammatocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives. Expert Opin Investig Drugs. 2023;32(1):25–35. doi: 10.1080/13543784.2023.2169127 EDN: HUUUAM
- Nicolay NH, Lopez Perez R, Saffrich R Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–19380. doi: 10.18632/oncotarget.4358 EDN: SOVJET
- Rühle A, Xia O, Perez RL, et al. The radiation resistance of human multipotent mesenchymal stromal cells is independent of their tissue of origin. Int J Radiat Oncol Biol Phys. 2018;100(5):1259–1269. doi: 10.1016/j.ijrobp.2018.01.015 EDN: YEFOMH
- Kiang JG. Mesenchymal stem cells and exosomes in tissue regeneration and remodeling: characterization and therapy. In: Gorbunov NV, editor. Tissue Barriers in Disease, Injury and Regeneration. Amsterdam: Elseiver; 2021. P:159–185. doi: 10.1016/B978-0-12-818561-2.00005-9 EDN: UPEUKU
- Dong LH, Jiang YY, Liu YJ et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep. 2015;5:8713. doi: 10.1038/srep08713
- Xu S, Liu C, Ji HL. Concise review: Therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses. Stem Cells Transl Med. 2019;8(4):344–354. doi: 10.1002/sctm.18-0038
- Willis GR, Fernandez-Gonzalez A, Anastas J, et al. mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018:197(1):104–116. doi: 10.1164/rccm.201705-0925OC
- Yang X, Balakrishnan I, Torok-Storb B, Pillai MM. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530. doi: 10.1155/2012/142530 EDN: GTJPVI
- Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med. 2003;5(12):1028–1038. doi: 10.1002/jgm.452 EDN: LNDVJH
- Mourcin F, Grenier N Mayol JF et al. Mesenchymal stem cells support expansion of in vitro irradiated CD34(+) cells in the presence of SCF, FLT3 ligand, TPO and IL3: potential application to autologous cell therapy in accidentally irradiated victims. Radiat Res. 2005;164(1):1–9. doi: 10.1667/rr3384 EDN: LNDVKB
- Fouillard L, Francois S, Bouchet S, et al. Innovative cell therapy in the treatment of serious adverse events related to both chemo-radiotherapy protocol and acute myeloid leukemia syndrome: the infusion of mesenchymal stem cells post-treatment reduces hematopoietic toxicity and promotes hematopoietic reconstitution. Curr Pharm Biotechnol. 2013;14(9):842–848. doi: 10.2174/1389201014666131227120222
- Carrancio S, Romo C, Ramos T, et al. Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment. Cell Transplant. 2013;22(7):1171–1183. doi: 10.3727/096368912X657431
- Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011;6(1):e14486. doi: 10.1371/journal.pone.0014486
- Hu KX, Sun QY, Guo M, Ai HS. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–58. doi: 10.1259/bjr/61042310
- Saha P, Bhanja R, Kabarriti L, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072. doi: 10.1371/journal.pone.0024072
- Zheng K, Wu W, Yang S, et al. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2016;11(6):2425–2431. doi: 10.3892/etm.2016.3248
- Sémont A, Mouiseddine M, Francois A, et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010;17(6):952–961. doi: 10.1038/cdd.2009.187
- Gong W, Guo M, Han Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 2016;7(9):e2387. doi: 10.1038/cddis.2016.276
- Francois S, Mouiseddine M, Allenet-Lepage B, et al. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. Biomed Res Int. 2013;2013:151679. doi: 10.1155/2013/151679
- Moussa L, Usunier B, Demarquay C, et al. Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplant. 2016;25(10):1723–1746. doi: 10.3727/096368916X691664 EDN: XTVYCF
- Forcheron F, Agay D, Scherthan H, et al. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One. 2012;7(2):e31694. doi: 10.1371/journal.pone.0031694
- François S, Mouiseddine M., Mathieu N., et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol. 2007;86(1):1–8. doi: 10.1007/s00277-006-0166-5 EDN: ALJTPX
- Horton JA, Hudak KE, Chung EJ, et al. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells. 2013;31(10):2231–2241. doi: 10.1002/stem.1483 EDN: SOKVMJ
- Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol Oncol Stem Cell Res. 2015;9(2):95–103.
- Lebedev VG, Deshevoy YB, Temnov AA, et al. Study of the effects of stromal vascular fraction, cultured adipose-derived stem cells, and paracrine factors of a conditioned medium in the treatment of severe radiation injuries of rat skin. Pathological physiology and experimental therapy. 2019;63(1):24–32. doi: 10.25557/0031-2991.2019.01.24-32 EDN: TMAFQY
- Soria B, Martin-Montalvo A, Aguilera Y, et al. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Front Cell Neurosci. 2019;13:204. doi: 10.3389/fncel.2019.00204
- Liao H, Wang H, Rong X, et al. Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Res Int. 2017;2017:1948985 doi: 10.1155/2017/1948985
- Kiang JG, Jiao W, Cary LH, et al. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res. 2010;173(3):319–332. doi: 10.1667/RR1892.1 EDN: NAFBBT
- Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002;170(2-3):73–82. doi: 10.1159/000046182 EDN: YINEEK
- Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring Superoxide Dismutase 1 expression. Antioxid Redox Signal. 2017;26(11):563–582. doi: 10.1089/ars.2016.6748
- Klein D, Schmetter A, Imsak R, et al. Therapy with multipotent mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal. 2016;24(2):53–69. doi: 10.1089/ars.2014.6183
- Mustafin RN, Khusnutdinova EK. Postnatal neurogenesis in the human brain. Morphology. 2021;159(2):37–46. doi: 10.17816/1026-3543-2021-159-2-37-46 EDN: UKMMXQ
- Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8(9):955–962. doi: 10.1038/nm749
- Yazlovitskaya EM, Edwards E, Thotala D, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–11186. doi: 10.1158/0008-5472.CAN-06-2740
- Chu C, Gao Y, Lan X, et al. Stem-cell therapy as a potential strategy for radiation-induced brain injury. Stem Cell Rev Rep. 2020;16(4):639–649. doi: 10.1007/s12015-020-09984-7 EDN: XVFAEJ
- Acharya MM, Christie LA, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22(1):55–64. doi: 10.3727/096368912X640565
- Acharya MM, Martirosian V, Christie LA, Limoli CL. Long-term cognitive effects of human stem cell transplantation in the irradiated brain. Int J Radiat Biol. 2014;90(9):816–820. doi: 10.3109/09553002.2014.927934
- Belkind-Gerson J, Hotta R, Whalen M, et al. Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neurosci. 2016;17:5. doi: 10.1186/s12868-016-0238-y EDN: LIALFW
- Joo KM, Jin J, Kang BG, et al. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One. 2012;7(2): e25936. doi: 10.1371/journal.pone.0025936 EDN: LGKVKE
- Smith SM, Giedzinski E, Angulo MC, et al. Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Transl Med. 2020;9(1):93–105. doi: 10.1002/sctm.18-0227 EDN: AYAARO
- Nanduri LSY, Duddempudi PK, Yang WL, et al. Extracellular vesicles for the treatment of radiation injuries. Front Pharmacol. 2021;12:662437. doi: 10.3389/fphar.2021.662437 EDN: DQQNRO
- Rios C, Jourdain JR, DiCarlo AL. Cellular therapies for treatment of radiation injury after a mass casualty incident. Radiat Res. 2017;188(2):242–245. doi: 10.1667/RR14835.1 EDN: YFLLYY
- Chute JP, Muramoto GG, Salter AB, et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of irradiated mice. Blood. 2007;109(6):2365–2372. doi: 10.1182/blood-2006-05-022640
- Ratajczak J, Wysoczynski M, Zuba-Surma E, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol. 2011;39(2):225–237 doi: 10.1016/j.exphem.2010.10.007 EDN: OMVSTF
- Rodgerson DO, Reidenberg BE, Harris AG, Pecora AL. Potential for a pluripotent adult stem cell treatment for acute radiation sickness. World J Exp Med. 2012;2(3):37–44. doi: 10.5493/wjem.v2.i3.37
- Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011;366(1575):2198–2207. doi: 10.1098/rstb.2011.0016
- Zheng H, Chen Y, Luo Q, et al. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenge. Cell Regen. 2023;12(1):31. doi: 10.1186/s13619-023-00175-6 EDN: RZKJBG
- Cichocki F, Goodridge JP, Bjordahl R, et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood. 2022;140(23):2451–2462. doi: 10.1182/blood.2021015184 EDN: OHIPJU
- Montel-Hagen A, Seet CS, Li S, et al. Organoid-Induced differentiation of conventional T cells from human pluripotent stem cells. Cell Stem Cell. 2019;24(3):376–389e8. doi: 10.1016/j.stem.2018.12.011
- Nakamura S, Takayama N, Hirata S, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–548. doi: 10.1016/j.stem.2014.01.011
- Bandekar M, Maurya DK, Sharma D, Sandur SK. preclinical studies and clinical prospects of Wharton’s jelly-derived MSC for treatment of acute radiation syndrome. Curr Stem Cell Rep. 2021;7(2):85–94. doi: 10.1007/s40778-021-00188-4 EDN: SQEDSN
- Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. doi: 10.1002/jev2.12404 EDN: WQKOII
- Murzina EV, Pak NV, Aksenova NV, et al. Effectiveness of cell therapy of acute radiation syndrome in mice with intravenous and intraperitoneal administration of a cellular product. Bulletin of the Russian Military Medical Academy. 2024;26(2):169–184. doi: 10.17816/brmma609492 EDN: ZROLAN
- Suzuki F, Loucas BD, Ito I, et al. Survival of mice with gastrointestinal acute radiation syndrome through control of bacterial translocation. J Immunol. 2018;201(1):77–86. doi: 10.4049/jimmunol.1701515
- Moskvin AA. Biology of extracellular vesicles, their role in the pathogenesis of thrombosis (review). Bulletin of Luhansk State Pedagogical University. Series 4: Biology. Medicine. Chemistry. 2021;3(67):58–67. EDN: ZKWUZC
- Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology (Basel). 2022;11(6):804. doi: 10.3390/biology11060804 EDN: PTVNUQ
- EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. doi: 10.1038/nrd3978 EDN: RHFOLF
- Bazzan E, Tinè M, Casara A, et al. Critical Review of the evolution of extracellular vesicles’ knowledge: From 1946 to today. Int J Mol Sci. 2021;22(12):6417. doi: 10.3390/ijms22126417 EDN: GXCWQL
- Suprunenko EA, Sazonova EA, Vasiliev AV. Extracellular vesicles of pluripotent stem cells. Ontogenez. 2021;52(3):157–169. doi: 10.31857/S0475145021030071 EDN: RXBPAN
- Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33(8):667–681. doi: 10.1016/j.tcb.2023.01.002 EDN: GXQGJL
- Chernov VM, Muzkantov AA, Baranova NB, Chernova OA. Bacterial extracellular vesicles for new technologies in biomedicine: problems and prospects. Bulletin of Biotechnology and Physico-Chemical Biology named after Yu.A. Ovchinnikov. 2022;18(4):48–61. EDN: KAMNOR
- He Y, Ren Y, Guo B, et al. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem. 2020;310:125942. doi: 10.1016/j.foodchem.2019.125942 EDN: TVPVJD
- Kudryavtsev IV, Golovkin AS, Totolyan AA. Diagnostic potential of determining individual extracellular vesicles subsets in clinical practice. Complex Issues of Cardiovascular Diseases. 2024;13(3):202–214. doi: 10.17802/2306-1278-2024-13-3-202-214 EDN: JWNRYX
- Jeske R, Bejoy J, Marzano M, Li Y. Human pluripotent stem cell-derived extracellular vesicles: Characteristics and applications. Tissue Eng Part B Rev. 2020;26(2):129–144. doi: 10.1089/ten.TEB.2019.0252 EDN: BDAAZY
- Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. doi: 10.3402/jev.v3.24641 EDN: YERXCY
- Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200(4): 373–383. doi: 10.1083/jcb.201211138
- Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi: 10.1038/nri855
- Wiklander OP, Nordin JZ, O’Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316. doi: 10.3402/jev.v4.26316 EDN: TCJZKF
- Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescenceassociated secretory phenotype factors. Geriatr Gerontol Int. 2020;20(6):539–546. doi: 10.1111/ggi.13928 EDN: SSLXDD
- Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8(1):1419. doi: 10.1038/s41598-018-19581-x
- Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851–858. doi: 10.1002/stem.2575 EDN: YGDAZA
- Zhang G, Zou, X, Huang Y, et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res. 2016;41(2):119–128. doi: 10.1159/ 000443413
- Wang L, Wei J, Da Fonseca Ferreira A, et al. Rejuvenation of senescent endothelial progenitor cells by extracellular vesicles derived from mesenchymal stromal cells. JACC: Basic Transl Sci. 2020;5(11):1127–1141. doi: 10.1016/j.jacbts.2020.08.005 EDN: YWIMGO
- Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. doi: 10.1186/scrt465 EDN: TLHBKA
- Accarie A, l’Homme B, Benadjaoud MA, et al. Extracellular vesicles derived from mesenchymal stromal cells mitigate intestinal toxicity in a mouse model of acute radiation syndrome. Stem Cell Res Ther. 2020;11(1):371. doi: 10.1186/s13287-020-01887-1 EDN: JKYBRC
- Wong KL, Zhang S, Wang M, et al. Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model. Arthroscopy. 2020;36(8):2215–2228.e2 doi: 10.1016/j.arthro.2020.03.031 EDN: EUDRRA
- Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219. doi: 10.1186/s13287-017-0660-9 EDN: DZXYNS
- Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019;9(1):4468. doi: 10.1038/s41598-019-41100-9 EDN: YVWKBM
- Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 2019;23(11):7617–7631. doi: 10.1111/jcmm.14635 EDN: EXPGRQ
- Schoefinius JS, Brunswig-Spickenheier B, Speiseder T, et al. Mesenchymal stromal cell-derived extracellular vesicles provide long-term survival after total body irradiation without additional hematopoietic stem cell support. Stem Cells. 2017;35(12):2379–2389. doi: 10.1002/stem.2716
- Xia C, Chang P, Zhang Y, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury. Oncol Rep. 2016;35(2):731–738. doi: 10.3892/or.2015.4433
- Xu T, Zhang Y, Chang P, et al. Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Res Ther. 2018;9(1):18. doi: 10.1186/s13287-018-0776-6 EDN: YFLPRJ
- Piryani SO, Jiao Y, Kam AYF, et al. Endothelial cell-derived extracellular vesicles mitigate radiation-induced hematopoietic injury. Int J Radiat Oncol Biol Phys. 2019;104(2):291–301. doi: 10.1016/j.ijrobp.2019.02.008
- Saha S, Aranda E, Hayakawa Y, et al. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun. 2016;7:13096. doi: 10.1038/ncomms13096
- Pull SL, Doherty JM, Mills JC, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A. 2005;10(1):99–104. doi: 10.1073/pnas.0405979102
- Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466–471. doi: 10.1073/pnas.1118857109
- Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep. 2020;32(2):107881. doi: 10.1016/j.celrep.2020.107881 EDN: APFGPY
- Alchinova IB, Polyakova MV, Yakovenko EN et al. Effect of extracellular vesicles formed by multipotent mesenchymal stromal cells on irradiated animals. Bull Exp Biol Med. 2019;166(4):574–579. doi: 10.1007/s10517-019-04394-3 EDN: CQTRPW
- He N, Dong M, Sun Y, et al. Mesenchymal stem cell-derived extracellular vesicles targeting irradiated intestine exert therapeutic effects. Theranostics. 2024;14(14):5492–5511. doi: 10.7150/thno.97623 EDN: ITPWPK
- Ratushniak MG, Shaposhnikova DA, Vysotskaia OV. Regulation of the anti-inflammatory activity of microglia and macrophages and the proliferation activity of neural stem cells under the influence of stem cell exosome signals. In: Receptors and Intracellular Signaling. Serpukhov: Tipografiya Pyatyi Format; 2023. P:283–289. (In Russ.)
- Zuo R, Liu M, Wang Y, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 2019;10(1):30 doi: 10.1186/s13287-018-1121-9 EDN: YZPKXS
- Kalmykova NV, Aleksandrova SA. Therapeutic effect of multipotent mesenchymal stromal cells after radiation exposure. Radiation Biology. Radioecology. 2016;56(2):117. (In Russ.) doi: 10.7868/S0869803116020077 EDN: VVHLHR
- Legeza VI, Aksenova NV, Murzina EV, et al. Prospects of cell therapy for hematopoietic syndrome of acute radiation sickness. Russian Military Medical Academy Reports. 2022;41(3):335–344. doi: 10.17816/rmmar89691 EDN: HLPUOP
- Preciado S, Muntión S, Sánchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells. 2021;39(1):26–32. doi: 10.1002/stem.3278 EDN: NBRNKL
Дополнительные файлы
