Chemo brain: myth or clinical reality? Literature review and clinical case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents a psychopathological phenomenon new for the Russian psychiatry. It combines various cognitive and psychopathological entities (hallucinations, delusions, consciousness disorders) occurring in cancer patients as a result of chemotherapy. In foreign literature, such entities are generalized under such common terms as chemo brain, chemo fog, and post-chemotherapy cognitive impairment (PCCI). Chemo Brain is a symptom complex developing after treatment with various groups of chemotherapeutic drugs and caused by certain functional and structural brain changes. This article collates the data on etiology, pathogenesis, clinical features and interventions in case of disorders generally known as Chemo Brain. In addition, it discusses chemotherapeutic drugs most often inducing the Chemo Fog phenomenon (Cisplatin, Doxorubicin, Methotrexate, 5-fluorouracil), and a clinical Chemo Brain case with severe cognitive impairment and a confusion episode. A 74-year-old female patient undergoing chemotherapy for sigmoid colon carcinoma and metastases experienced a sharp deterioration of memory, self-care, and mobility after a routine chemotherapy round. The patient had been treated with a cocktail of chemotherapy drugs for 3 years and had several surgeries. With acute memory impairment, she consulted the internal medicine department. The doctors were puzzled with her symptoms. Having received advice of various medical specialists and the corresponding treatment, the patient showed improvement of both cognitive and motor functions. The review emphasizes the need for further clinical research of Chemo Brain drug treatment.

About the authors

Kausar K. Yakhin

Kazan State Medical University

Email: yakhinkk@gmail.com
ORCID iD: 0000-0001-5958-5355
SPIN-code: 6275-6051

MD, Dr. Sci. (Medicine)

 

Russian Federation, Kazan

Dina T. Zagretdinova

Kazan State Medical University

Email: dinakadirleeva99@gmail.com
ORCID iD: 0009-0002-9961-6245
SPIN-code: 6894-1320

Resident

Russian Federation, Kazan

Konstantin S. Sergienko

Kazan State Medical University

Author for correspondence.
Email: kostya_s99@mail.ru
ORCID iD: 0000-0002-2942-6174
SPIN-code: 7792-3042

Resident

Russian Federation, Kazan

References

  1. Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Cancer today Gco. Iarc. Who. Int. 2020. [cited 2024 Aug 22]. Available from: https://gco.iarc.fr/today/en
  2. Oncology in Russia. [cited 2024 Jun 18]. Available from: https://tochno.st/problems/oncology
  3. de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–e190. doi: 10.1016/S2214-109X(19)30488-7
  4. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–289. doi: 10.3322/caac.21349
  5. Rowland JH, Kent EE, Forsythe LP, et al. Cancer survivorship research in Europe and the United States: Where have we been, where are we going, and what can we learn from each other? Cancer. 2013;119 Suppl 11(0 11):2094-2108. doi: 10.1002/cncr.28060
  6. Gutmann DH. Clearing the Fog surrounding Chemobrain. Cell. 2019;176(1–2):2–4. doi: 10.1016/j.cell.2018.12.027
  7. Levine PM, Silberfarb PM, Lipowski ZJ. Mental disorders in cancer patients: a study of 100 psychiatric referrals. Cancer. 1978;42(3):1385–1391. doi: 10.1002/1097-0142(197809)42:3<1385::aid-cncr2820420349>3.0.co;2-0
  8. Ahles TA. Brain vulnerability to chemotherapy toxicities. Psychooncology. 2012;21(11):1141–1148. doi: 10.1002/pon.3196
  9. Argyriou AA, Assimakopoulos K, Iconomou G, et al. Either called "chemobrain" or "chemofog," the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J Pain Symptom Manage. 2011;41(1):126–139. doi: 10.1016/j.jpainsymman.2010.04.021
  10. Lange M, Joly F, Vardy J, et al. Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors. Ann Oncol. 2019;30(12):1925–1940. doi: 10.1093/annonc/mdz410
  11. Vykhovanets NYu, Aleshechkin PA, Tomash LA. Arly and long-term neurological complications of chemotherapy in oncology (literature review). Malignant Tumoursis. 2022;12(4):41–49. EDN: JIYRGG doi: 10.18027/2224-5057-2022-12-4-41-49
  12. Kholodova NB, Sotnikov VM, Dobrovolskaia NIu, Ponkratova IuA. Aspects of encephalopathy in oncologic patients after chemotherapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2014;114(12):84–88. EDN: TIWRTT doi: 10.17116/jnevro201411412184-88
  13. Iozefi D, Vinidchenko M, Demchenko N. Chemobrain, phenomenon of post-chemotherapy cognitive impairment. options of mri imaging and follow up monitoring. Glavnyi Vrach Uga Russia. 2017;(3):43–47. EDN: YZBIQZ
  14. Lange M, Joly F, Vardy J, et al. Cancer-related cognitive impairment: An update on state of the art, detection, and management strategies in cancer survivors. Ann Oncol. 2019;30(12):1925–1940. doi: 10.1093/annonc/mdz410
  15. Henderson FM, Cross AJ, Baraniak AR. 'A new normal with chemobrain': Experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors. Health Psychol Open. 2019;6(1):2055102919832234. doi: 10.1177/2055102919832234
  16. Janelsins MC, Kesler SR, Ahles TA, Morrow GR. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry. 2014;26(1):102–113. doi: 10.3109/09540261.2013.864260
  17. Fernandez HR, Varma A, Flowers SA, Rebeck GW. Cancer chemotherapy related cognitive impairment and the impact of the Alzheimer's disease risk factor APOE. Cancers (Basel). 2020;12(12):3842. doi: 10.3390/cancers12123842
  18. Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep. 2023;10:544–553. doi: 10.1016/j.toxrep.2023.04.015
  19. Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging. 2014;35(Suppl 2):S11–S19. doi: 10.1016/j.neurobiolaging.2014.03.036
  20. Li M, Caeyenberghs K. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review. Neurosci Biobehav Rev. 2018;92:304–317. doi: 10.1016/j.neubiorev.2018.05.019
  21. Henneghan A, Rao V, Harrison RA, et al. Cortical brain age from pre-treatment to post-chemotherapy in patients with breast cancer. Neurotox Res. 2020;37(4):788–799. doi: 10.1007/s12640-019-00158-z
  22. Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24. doi: 10.1038/nrneurol.2014.228
  23. Chiu GS, Maj MA, Rizvi S, et al. Pifithrin-m prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res. 2017;77(3):742–752. doi: 10.1158/0008-5472.CAN-16-1817
  24. Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 2018;19(2):63–80. doi: 10.1038/nrn.2017.170
  25. Ren X, Keeney JTR, Miriyala S, et al. The triangle of death of neurons: oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment (‘chemobrain’) involving TNF-α. Free Radic Biol Med. 2019;134:1–8. doi: 10.1016/j.freeradbiomed.2018.12.029
  26. Ma J, Huo XJ, Jarpe MB, et al. Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathol Commun. 2018;6(1):103. doi: 10.1186/s40478-018-0604-3
  27. Shirihai OS, Song M, Dorn GW 2nd. How mitochondrial dynamism orchestrates mitophagy. Circ Res. 2015;116(11):1835–1849. doi: 10.1161/CIRCRESAHA.116.306374
  28. Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2018;60(5):748–766. doi: 10.1016/j.neuron.2008.10.010
  29. Andres AL, Gong X, Di K, Bota DA. Low-doses of cisplatin injure hippocampal synapses: a mechanism for ‘chemo’ brain? Exp Neurol. 2014;255:137–144. doi: 10.1016/j.expneurol.2014.02.020
  30. English K, Shepherd A, Uzor NE, et al. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun. 2020;8(1):36. doi: 10.1186/s40478-020-00897-7
  31. Wang XM, Walitt B, Saligan L, et al. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine. 2015;72(1):86–96. doi: 10.1016/j.cyto.2014.12.006
  32. Gutmann DH. Clearing the Fog surrounding Chemobrain. Cell. 2019;176(1–2):2–4. doi: 10.1016/j.cell.2018.12.027
  33. Asher A. Cognitive dysfunction among Cancer survivors. Am J Phys Med Rehabil. 2011;90(5 Suppl 1):S16–S26. doi: 10.1097/PHM.0b013e31820be463
  34. Jiang T, Cadenas E. Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell. 2014;13(6):1059–1067. doi: 10.1111/acel.12268
  35. Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics Genom. 2011;21(7):440–446. doi: 10.1097/FPC.0b013e32833ffb56
  36. Alhowail AH, Bloemer J, Majrashi M, et al. Doxorubicin-induced neurotoxicity is associated with acute alterations in synaptic plasticity, apoptosis, and lipid peroxidation. Toxicol. Mech. Methods. 2019;29(6):457–466. doi: 10.1080/15376516.2019.1600086
  37. Christie L-A, Acharya MM, Parihar VK, et al. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. 2012;18(7):1954–1965. doi: 10.1158/1078-0432.CCR-11-2000
  38. Salas-Ramirez KY, Bagnall C, Frias L, et al. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res. 2015;292:133–141. doi: 10.1016/j.bbr.2015.06.028
  39. Gaman A, Uzoni A, Popa-Wagner A, et al. The role of oxidative stress in etiopathogenesis of chemotherapy induced cognitive impairment (CICI) — “Chemobrain”. Aging Dis. 2016;7(3):307–317. doi: 10.14336/AD.2015.1022
  40. Sekeres MJ, Bradley-Garcia M, Martinez-Canabal A, Winocur G. Chemotherapy-induced cognitive impairment and hippocampal neurogenesis: a review of physiological mechanisms and interventions. Int J Mol Sci. 2021;22(23):12697. doi: 10.3390/ijms222312697
  41. Fukuda Y, Li Y, Segal RA. A Mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci. 2017;11:481. doi: 10.3389/fnins.2017.00481
  42. Gibson EM, Nagaraja S, Ocampo A, et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019;176(1–2):43–55.e13. doi: 10.1016/j.cell.2018.10.049
  43. Zvonkov EE, Koroleva DA, Gabeeva NG et al. high-dose chemotherapy for primary diffuse large B-cell lymphoma of the central nervous system. Interim results of the CNS-2015 protocol. Russian Journal of Hematology and Transfusiology. 2019;64(4):447–461. EDN: ZANTQB doi: 10.35754/0234-5730-2019-64-4-447-461
  44. Penzin OV, Shvyrev SL, Zarubina TV. Results of implementation in the clinical practice the prognostic model for assessing the risk development of mielotoxic complications of chemotherapy. Journal of New Medical Technologies. 2019;26(1):112–118. EDN: ZALHUT doi: 10.24411/1609-2163-2019-16061
  45. Mesheryakova AV, Zorkin EK. Deficiency of the peripheral nervous system in the structure of post-chemotherapeutic complications. Literature review. International Journal of Humanities and Natural Sciences. 2017;(9):35–40. EDN: ZHZKZR
  46. Tanimukai H, Kudo T. Fluvoxamine alleviates paclitaxel-induced neurotoxicity. Biochem Biophys Rep. 2015;4:202–206. doi: 10.1016/j.bbrep.2015.09.014
  47. De Man FM, Goey AKL, van Schaik RHN, et al. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57(10):1229–1254. doi: 10.1007/ s40262-018-0644-7
  48. Nguyen LD, Ehrlich BE. Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. EMBO Mol Med. 2020;12(6):e12075. doi: 10.15252/emmm.202012075
  49. Walker AK, Chang A, Ziegler AI, et al. Low dose aspirin blocks breast cancer-induced cognitive impairment in mice. PLoS One. 2018;13(12):e0208593. doi: 10.1371/journal.pone.0208593
  50. Chang A, Chung NC, Lawther AJ, et al. The anti-inflammatory drug aspirin does not protect against chemotherapy-induced memory impairment by paclitaxel in mice. Front Oncol. 2020;10:564965. doi: 10.3389/fonc.2020.564965
  51. Chong CR, Chabner BA. Mysterious metformin. Oncologist. 2009;14(12):1178–1181. doi: 10.1634/theoncologist.2009-0286
  52. Alharbi I, Alharbi H, Almogbel Y, et al. Effect of metformin on doxorubicin-induced memory dysfunction. Brain Sci. 2020;10(3):152. doi: 10.3390/brainsci10030152
  53. Xavier JB, Young VB, Skufca J, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192–204. doi: 10.1016/j.trecan.2020.01.004
  54. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973–980. doi: 10.1126/science.aay9189
  55. Ciernikova S, Mego M, Chovanec M. Exploring the potential role of the gut microbiome in chemotherapy-induced neurocognitive disorders and cardiovascular toxicity. Cancers (Basel). 2021;13(4):782. doi: 10.3390/cancers13040782
  56. Das A, Ranadive N, Kinra M, et al. An overview on chemotherapy-induced cognitive impairment and potential role of antidepressants. Curr Neuropharmacol. 2020;18(9):838–851. doi: 10.2174/1570159X18666200221113842
  57. Omi T, Tanimukai H, Kanayama D, et al. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell Death Dis. 2014;5(7):e1332. doi: 10.1038/cddis.2014.301
  58. Wood LJ, Nail LM, Perrin NA, et al. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol Res Nurs. 2006;8(2):157–169. doi: 10.1177/1099800406290932
  59. Walker FR. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology. 2013;67:304–317. doi: 10.1016/j.neuropharm.2012.10.002
  60. Rowe MK, Chuang DM. Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med. 2004;6(21):1–18. doi: 10.1017/S1462399404008385
  61. Yazlovitskaya EM, Edwards E, Thotala D, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–11186. doi: 10.1158/0008-5472.CAN-06-2740
  62. Rola R, Raber J, Rizk A, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188(2):316–330. doi: 10.1016/j.expneurol.2004.05.005
  63. Mohamed RH, Karam RA, Amer MG. Epicatechin attenuates doxorubicin-induced brain toxicity: critical role of TNF-α, iNOS and NF-κB. Brain Res Bull. 2011;86(1–2):22–28. doi: 10.1016/j.brainresbull.2011.07.001
  64. John J, Kinra M, Ranadive N, et al. Neuroprotective effect of Mulmina Mango against chemotherapy-induced cognitive decline in mouse model of mammary carcinoma. Sci. Rep. 2022;12(1):3072. doi: 10.1038/s41598-022-06862-9
  65. Jaiswara PK, Shukla SK. Chemotherapy-mediated neuronal aberration. Pharmaceuticals (Basel). 2023;16(8):1165. doi: 10.3390/ph16081165
  66. Howes MJ, Perry E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging. 2011;28(6):439–468. doi: 10.2165/11591310-000000000-00000 .
  67. Ongnok B, Khuanjing T, Chunchai T, et al. Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurotherapeutics. 2023;20(2):602–603. doi: 10.1007/s13311-023-01347-7
  68. Alsikhan RS, Aldubayan MA, Almami IS, Alhowail AH. Protective effect of galantamine against doxorubicin-induced neurotoxicity. Brain Sci. 2023;13(6):971. doi: 10.3390/brainsci13060971

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».