Structures of Nanodiamonds with Photoactive Modifiers

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, binary and ternary complexes of fullerenes and diphthalocyanines of europium with detonation nanodiamonds have been obtained, which can serve as platforms for the delivery of these hydrophobic molecules into aqueous biological media for the tasks to improve magnetic resonance imaging, photodynamic therapy, and diagnostics using luminescent labels. Detonation nanodiamonds (size ~4–5 nm) had a positive potential (30–70 mV) in an aqueous medium due to groups (CH, COH) grafted onto the surface as a result of heat treatment in a hydrogen atmosphere. During the interaction of positively charged diamonds with electronegative hydrated fullerenes in an aqueous medium, the initial aggregates of each of the components were destroyed, and their electrostatic bonding led to the formation of stable compact complexes ~20 nm in size according to the data of dynamic light scattering and small-angle neutron scattering in colloids under normal conditions (20°С). Binary complexes included, on average, two fullerene molecules per 30–40 diamond particles. The introduction of diphthalocyanine molecules into a binary colloid resulted in the formation of stable ternary structures. The obtained complexes of diamonds, fullerenes, and diphthalocyanine molecules are promising for biomedical applications due to the luminescent and magnetic properties of the components.

Авторлар туралы

V. Lebedev

Petersburg Nuclear Physics Institute B.P. Konstantinova, National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: lebedev_vt@pnpi.nrcki.ru
Russia, 188300, Leningrad region, Gatchina

Yu. Kulvelis

Petersburg Nuclear Physics Institute B.P. Konstantinova, National Research Center “Kurchatov Institute”

Email: lebedev_vt@pnpi.nrcki.ru
Russia, 188300, Leningrad region, Gatchina

M. Soroka

Petersburg Nuclear Physics Institute B.P. Konstantinova, National Research Center “Kurchatov Institute”

Email: lebedev_vt@pnpi.nrcki.ru
Russia, 188300, Leningrad region, Gatchina

O. Kyzyma

Joint Institute for Nuclear Research

Email: lebedev_vt@pnpi.nrcki.ru
Russia, 141980, Moscow region, Dubna

A. Vul

FTI named A.F. Ioffe

Email: lebedev_vt@pnpi.nrcki.ru
Russia, 194021, St. Petersburg

Әдебиет тізімі

  1. Wang S., Gao R., Zhou F., Selke M. // J. Mater. Chem. 2004. V. 14. P. 487.
  2. Chen X-ng., Song J., Chen X-an., Yang H. // Chem. Soc. Rev. 2019. V. 48. P. 3073. https://doi.org/10.1039/c8cs00921j
  3. Soares D.C.F., Domingues S.C., Viana D.B., Tebaldi M.L. // Biomed Pharmacotherapy. 2020. V. 131. P. 110695. https://doi.org/10.1016/j.biopha.2020.110695
  4. Seaberg J., Montazerian H., Hossen N., Bhattacharya R., Khademhosseini A., Mukherjee P. // ACS Nano. 2021. V.15. № 2. P. 2099. https://doi.org/10.1021/acsnano.0c09382
  5. Gao G., Guo Q., Zhi J. // Small. 2019. V. 15. № 48. P. 1902238. https://doi.org/10.1002/smll.201902238
  6. Sreenivasan V.K.A., Zvyagin A.V., Goldys E.M. // J. Phys.: Condens. Matter. 2013. V. 25. P. 194101. https://doi.org/10.1088/0953-8984/25/19/194101
  7. Lin B.-R., Chen C.-H., Chang C.-H., Kunuku S., Chen T.-Y., Hsiao T.-Y., Yu H.-K., Chang Y.-J., Liao L.-C., Chen F.-H. // J. Phys. D. 2019. V. 52. № 50. P. 505402.
  8. Anilkumar P., Lu F., Cao L., Luo P.G., Liu J.-H., Sahu S., Tackett K. N., Wang Y., Sun Y.-P. // Current Med. Chem. 2011. V. 18. № 14. P. 2045. https://doi.org/10.2174/092986711795656225
  9. Rak J., Pouckova P., Benes J., Vetvicka D. // Anticancer Res. 2019. V. 39. P. 3323. https://doi.org/10.21873/anticanres.13475
  10. Bogdanović G., Djordjević A. // Srp. Arh. Celok. Lek. 2016. V. 144. № 3–4. P. 222. https://doi.org/10.2298/SARH1604222B
  11. Anani T., Rahmati S., Sultana N., David A.E. // Theranostics. 2021. V. 11. № 2. P. 579. https://doi.org/10.7150/thno.4881
  12. Филоненко Е. В., Серова Л.Г. // Biomed. Photonics. 2016. Т. 5. № 2. С. 26.
  13. Гафтон Г.И., Семилетова Ю.В., Анисимов В.В., Гельфонд М.Л., Мяснянкин М.Ю., Новик А.В., Нехаева Т.Л., Балдуева И.А., Гафтон И.Г. // Сибирский онкологический журн. 2013. № 4(58). С. 23.
  14. Гельфонд М.Л., Балдуева И.А., Барчук А.С., Гафтон Г.И., Анисимов В.В., Семилетова Ю.В., Новик А.В., Мяснянкин М.Ю., Нехаева Т.Л., Данилова А.Б., Воробейчиков Е.В., Вааль А.И., Гафтон И.Г. // Biomed. Photonics. 2016. Т. 5. № 3. С. 4.
  15. Лyкьянeц E.A. // Biomed. Photonics. 2013. T. 2. № 3. C. 3.
  16. Abrahamse H., Hamblin M.R. // Biochem. J. 2016. V. 473. P. 347.
  17. Zhang J., Jiang C., Figueiró Longo J.P., Azevedo R.B., Zhang H., Muehlmann L.A. // Acta Pharm. Sin. B. 2018. V. 8. № 2. P. 137.
  18. Abrahamse H., Hamblin M.R. Photomedicine and Stem Cells. The Janus Face of Photodynamic Therapy (PDT) to Kill Cancer Stem Cells, and Photobiomodulation (PBM) to Stimulate Normal Stem Cells. Bristol: IOP Publishing, 2017. 103 p. https://doi.org/10.1088/978-1-6817-4321-9
  19. Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. // Biomed. Pharmacotherapy. 2018. V. 106. P. 1098.
  20. Van Straten D., Mashayekhi V., de Bruijn H., Oliveira S., Robinson D. // Cancers. 2017. V. 9. № 2. P. 19.
  21. Деев Р.В., Билялов А.И., Жампеисов Т.М. // Гены и клетки. 2018. Т. 13. № 1. С. 6.
  22. Bagrov I.V., Dadeko A.V., Kiselev V.M., Murav’eva T.D., Starodubtsev A.M. // Opt. Spectr. 2018 V. 125. № 6. P. 903.
  23. Isakau H.A., Parkhats M.V., Knyukshto V.N., Dzhagarov B.M., Petrov E.P., Petrov P.T. // J. Photochem. Photobiol. B. 2008. V. 92. № 3. P. 165.
  24. Paul S., Heng P.W.S., Chan L.W. // J. Fluorescence. 2012. V. 23. № 2. P. 283.
  25. Brilkina A., Dubasova L., Sergeeva E., Pospelov A., Shilyagina N., Shakhova N., Balalaeva I. // J. Photochem. Photobiol. B. 2018. V. 191. P. 128.
  26. Шилягина Н.Ю., Плеханов В.И., Шкунов И.В., Шилягин П.А., Дубасова Л.В., Брилкина А.А., Соколова Е.А., Турчин И.В., Балалаева И.В. // Современные технологии в медицине. 2014. Т. 6. № 2. С. 15.
  27. Шилов И.П., Иванов А.В., Румянцева В.Д., Миронов А.Ф. // Фундаментальные науки – медицине. Биофизические медицинские технологии / Ред. Григорьев А.И., Владимиров Ю.А. М.: МАКС Пресс, 2015. Т. 2. С. 1104.
  28. Ostroverkhov P.V., Semkina A.S. Naumenko V.A., Plotnikova E.A., Melnikov P.A., Tabakumova O., Yakubovskaya R.I., Mironov A.F., Vodopyanov S.S., Abakumov A.M., Majouga A.G., Grin M.A., Chekhonin V.P., Abakumov M.A. // J. Colloid Interface Sci. 2019. V. 537. P. 132.
  29. Senthilkumar N., Sharma P. K., Sood N., Bhalla N. // Coord. Chem. Rev. 2021. V. 445. P. 214082. https://doi.org/10.1016/j.ccr.2021.214082
  30. McCluskey D.M., Smith T.N., Madasu P.K., Coumbe C.E., Mackey M.A., Fulmer P.A., Wynne J.H., Stevenson S., Phillips J.P. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 4. P. 882. https://doi.org/10.1021/am900008v
  31. Tagmatarchis N., Okada K., Tomiyama T., Yoshida T., Kobayashi Y., Shinohara H. // Chem. Commun. 2001. Iss.15. P. 1366.
  32. Tagmatarchis N., Kato H., Shinohara H. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 3200. https://doi.org/10.1039/B103522N
  33. Kawashima Y., Ohkubo K., Fukuzumi S. // J. Phys. Chem. A. 2012. V. 116. № 36. P. 8942.
  34. Васильев Н.Е., Огиренко А.П. // Лазерная медицина. 2002. № 6(1). С 32.
  35. Dyrda G., Zakrzyk M., Broda M.A., Pedzinski T., Mele G., Słota R. // Molecules. 2020. V. 25. P. 3638. https://doi.org/10.3390/molecules25163638
  36. Dallas P., Velasco P.Q., Lebedeva M., Porfyrakis K. // Chem. Phys. Lett. 2019. V. 730. P. 130. https://doi.org/10.1016/j.cplett.2019.05.055
  37. Juha L., Hamplova V., Kodymova J., Spalek O. // J. Chem. Soc. Chem. Commun. 1994. Iss. 21. P. 2437.
  38. Martínez-Agramunt V., Peris E. // Inorg. Chem. 2019. V. 58. № 17. P. 11836. https://doi.org/10.1021/acs.inorgchem.9b02097
  39. Yoko I., Toshiya O., Minfang Z., Masako Y., Sumio I. // Bull. Chem. Soc. Jpn. 2008. V. 81. Iss. 12. P. 1584. https://doi.org/10.1246/bcsj.81.1584
  40. Stasheuski A.S., Galievsky V.A., Stupak A.P., Dzhagarov B.M., Choi M.J., Chung B.H., Jeong J.Y. // Photochem. Photobiol. 2014. V. 90. P. 997. https://doi.org/10.1111/php.12294
  41. Zhao B., He Y.Y., Bilski P.J., Chignell C.F. // Chem. Res. Toxicol. 2008. V. 21. P. 1056. https://doi.org/10.1021/tx800056w
  42. Pan Y., Liu X., Zhang W., Liu Z., Zeng G., Shao B., Liang Q., He Q., Yuan X., Huang D. Chen M. // Appl. Catal. B. 2020. V. 265. P. 118579. https://doi.org/10.1016/j.apcatb.2019.118579
  43. Shilin V.A., Lebedev V.T., Kolesnick S.G., Kozlov V.S., Grushko Yu.S., Sedov V.P., Kukorenko V.V. // Crystallogr. Rep. 2011. V. 56. № 7. P. 1192.
  44. Lebedev V.T., Grushko Yu.S., Sedov V.P., Shikin V.A., Kozlov V.S., Orlov S.P., Sushkov P.A., Kolesnik S.G., Szhogina A.A., Shabalin V.V. // Phys. Solid State. 2014. V. 56. № 1. P. 178.
  45. Дубовский И.М., Лебедев В.Т., Шилин В.А., Сжогина А.А., Суясова М.В., Седов В.П. // Кристаллография. 2018. Т. 63. № 1. С. 144.
  46. Buchler J.W., Ng D.K.P. Metal Tetrapyrrole Double- and triple-Deckers with Special Emphasis on Porphyrin Systems // The Porphyrin Handbook. Vol. 3. / Eds. Kadish K.M., Smith K.M., Guilard R. San Diego, San Francisco, New York, Boston, London, Sydney, Toronto: Academic Press, 2000. P. 246.
  47. Aleksenskiy A.E., Eydelman E.D., Vul A.Ya. // Nanotechnol. Lett. 2011. V. 3. P. 68.
  48. Alexenskii A.E. Technology of Preparation of Detonation Nanodiamond // Detonation Nanodiamonds: Science and Applications / Eds. Vul A.Ya., Shenderova O.A. Singapore: Pan Stanford Publishing, 2014. Ch. 2. P. 37.
  49. Lebedev V.T., Kulvelis Yu.V., Kuklin A.I., Vul A.Ya. // Condens. Matter. 2016. V. 1. № 10. P. 1. https://doi.org/10.3390/condmat1010010
  50. Vul A.Ya., Eidelman E.D., Aleksenskiy A.E., Shvidchenko A.V., Dideikin A.T., Yuferev V.S., Lebedev V.T., Kulvelis Yu.V., Avdeev M.V. // Carbon. 2017. V. 114. P. 242.
  51. Andrievsky G.V., Kosevich M.V., Vovk O.M., Shelkovsky V.S., Vashchenko L.A. // J. Chem. Soc., Chem. Commun. 1995. Iss. 12. P. 1281. https://doi.org/10.1039/C39950001281
  52. Prylutskyy Yu.I., Petrenko V.I., Ivankov O.I., Kyzyma O.A., Bulavin L.A., Litsis O.O., Evstigneev M.P., Cherepanov V.V., Naumovets A.G., Ritter U. // Langmuir. 2014. V. 30. № 14. P. 3967. https://doi.org/10.1021/la404976k
  53. Kyzyma E.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M V., Volkov D. S., Mikheev I.V., Koshlan I.V., Koshlan N.A., Bláha P., Avdeev M.V., Aksenov V.L. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2015. V. 9. P. 1. https://doi.org/10.1134/S1027451015010127
  54. Kyzyma E.A., Kuzmenko M.O., Bulavin L.A., Petrenko V.I., Mikheev I.V., Zabolotnyi M.A., Kubovcikova M., Kopcansky P., Korobov M. V., Avdeev M.V., Aksenov V.L. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2016. V. 10. P. 1125. https://doi.org/10.1134/S1027451016050517
  55. Москалев П.Н. // Кoорд. химия. 1990. Т. 16. № 2. С. 147.
  56. Kuklin A.I., Soloviov D.V., Rogachev A.V., Utrobin P.K., Kovalev Yu.S., Balasoiu M., Ivankov O.I., Sirotin A.P., Murugova T.N., Petukhova T.B., Gorshkova Yu.E., Erhan R.V., Kutuzov S.A., Soloviev A.G., Gordeliy V.I. // J. Phys.: Conf. Ser. 2011. V. 291. P. 012013. https://doi.org/10.1088/1742-6596/291/1/012013
  57. Kuklin A.I., Islamov A.Kh., Gordeliy V.I. // Neutron News. 2005. V. 16. № 3. P. 16. https://doi.org/10.1080/10448630500454361
  58. Soloviev A.G., Solovjeva T.M., Ivankov O.I., Soloviov D.V., Rogachev A.V., Kuklin A.I. // J. Phys.: Conf. Ser. 2017. V. 848. P. 012020. https://doi.org/10.1088/1742-6596/848/1/012020
  59. Svergun D.I. // J. Appl. Crystallogr. 1992. V. 25. P. 495. https://doi.org/10.1107/S0021889892001663
  60. Konarev P.V., Petoukhov M.V., Volkov V.V., Svergun D.I. // J. Appl. Crystallogr. 2006. V. 39. P. 277.
  61. Kulvelis Y.V., Lebedev V.T., Yevlampieva N.P., Cherechukin D.S., Yudina E.B. Enhancement of Singlet Oxygen Generation of Radachlorin® Conjugated with Polyvinylpyrrolidone and Nanodiamonds in Aqueous Media // Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology / Eds. Garg S., Chandra A. London: Springer, 2022. Ch. 10. P. 281. https://doi.org/10.1007/978-3-030-77371-7_10
  62. Lebedev V.T., Török Gy., Kulvelis Yu.V., Soroka M.A., Ganzha V.A., Orlova V.A., Fomin E.V., Sharonova L.V., Shvidchenko A.V. New Photocatalytic Materials Based on Complexes of Nanodiamonds with Diphthalocyanines of Rare Earth Elements // Green Photocatalytic Semiconductors. Green Chemistry and Sustainable Technology / Eds. Garg S., Chandra A. London: Springer, 2022. Ch. 7. P. 179. https://doi.org/10.1007/978-3-030-77371-7_7
  63. Kulvelis Yu., Lebedev V., Yudina E., Shvidchenko A., Aleksenskii A., Vul A., Kuklin A. // J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 2020. V. 14. Suppl. 1. P. S132.

Қосымша файлдар


© В.Т. Лебедев, Ю.В. Кульвелис, М.А. Сорока, Е.А. Кизима, А.Я. Вуль, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».