Spectroscopic and Kinetic Investigations of the Permeability of the Surface Layers of Membranes in the Process of Microfiltration Separation of Water-Organic Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

IR spectroscopy was used to study the structure of the surface layer of air-dry, water-saturated and working samples of microfiltration composite membranes MMK-0.45 and MFFC-2G based on polyamide and fluoroplast, respectively. IR spectra were analyzed in the frequency ranges 500–1700 and 2800–3400 cm–1. In the case of the polyamide membrane, the main peaks of the functional groups of polymers in the IR spectra of dry, water-saturated, and working samples coincide. The absorption bands of polyamides range from 650 to 5000 cm–1, corresponding to the peptide bond. In the absorption band of 1650 cm–1, bending vibrations of the carbonyl group occur, and in the band of 1550 cm–1, bending vibrations of the N–H bond are observed. The 3500–3000 cm–1 region is the stretching vibrations of the NH, OH and water groups. In the case of the working sample of the MFFC-2G fluoroplastic membrane, the stretching vibrations of the fluorine-substituted groups lie in the range 1100–1400 cm–1; they correspond to the C–F stretching vibrations (1198 and 1171 cm–1). The IR spectrum also shows two peaks in the region 2800–3000 cm–1; they are characteristic of biodiesels from vegetable oils. Studies of the specific output flow and the change in the pH of the permeate depending on time and transmembrane pressure were carried out. There are several periods of a decrease in the specific output flux depending on time, which is most likely due to the unblocking of the membrane pores by organic compounds in the solution being separated, and the possible formation of a boundary gel layer. The decrease in the pH of the permeate with an increase in the transmembrane pressure on the MMK-0.45 and MFFC-2G microfiltration membranes is probably due to an increase in the rate of migration of organic acids through the helium layer and the working layer of the membrane.

About the authors

D. N. Konovalov

Tambov State Technical University

Author for correspondence.
Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

I. V. Khorokhorina

Tambov State Technical University

Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

S. I. Lazarev

Tambov State Technical University

Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

S. A. Nagornov

All-Russian Research Institute for the Use of Machinery and Petroleum Products in Agriculture

Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

A. Yu. Kornev

All-Russian Research Institute for the Use of Machinery and Petroleum Products in Agriculture

Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

S. I. Kotenev

Tambov State Technical University

Email: kdn1979dom@mail.ru
Russia, 392000, Tambov

References

  1. Лезова О.С., Мясников Д.В., Шилова О.А., Иванова А.Г., Селиванов С.И. // Альтернативная энергетика и экология. 2021. № 4–6(362–364). С. 93. https://doi.org/10.15518/isjaee.2021.04-06.093-105
  2. Fazullin D.D., Mavrin G.V., Sokolov M.P., Shaikhiev I.G. // Modern Appl. Sci. 2015. V. 9. № 1. P. 242. https://doi.org/10.5539/mas. v9n1p242
  3. Примаченко О.Н., Одиноков А.С., Барабанов В.Г., Тюльманков В.П., Мариненко Е.А., Гофман И.В., Иванчев С.С. // Журн. прикладной химии. 2018. Т. 91. № 1. С. 110.
  4. Алтынов В.А., Кравец Л.И., Рогачев А.А., Ярмоленко М.А. // Наноиндустрия. 2020. Т. 13. № S2. С. 303. https://doi.org/10.22184/1993-8578.2020.13.2s.303.311
  5. Маркова А.И., Григорьева И.А., Иванова А.И., Хижняк С.Д., Ruehl E., Пахомов П.М. // Журн. прикладной спектроскопии. 2022. Т. 89. № 3. С. 348. https://doi.org/10.47612/0514-7506-2022-89-3-348-353
  6. Бункин Н.Ф., Козлов В.А., Кирьянова М.С., Сафроненков Р.С., Болоцкова П.Н., Горелик В.С., Джураев Й., Сабиров Л.М., Применко А.Э., Ву М.Т. // Оптика и спектроскопия. 2021. Т. 129. № 4. С. 472. https://doi.org/10.21883/OS.2021.04.50777.241-20
  7. Liang Z., Chen W., Liu J., Wang S., Zhou Z., Li W., Sun G., Xin Q. // J. Membr. Sci. 2004. V. 233. № 1–2. P. 39. https://doi.org/10.1016/j.memsci.2003.12.008
  8. Лазарев С.И., Нагорнов С.А., Ковалев С.В., Коновалов Д.Н., Корнев А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 1. С. 86. https://doi.org/10.31857/S1028096022010095
  9. Лазарев С.И., Хорохорина И.В., Лазарев Д.С., Михайлин М.И., Арзамасцев А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 6. С. 45. https://doi.org/10.31857/S102809602106011X
  10. Смирнова Н.Н., Кутровская С.В. // Журн. прикладной химии. 2016. Т. 89. № 2. С. 265.
  11. Vasil’eva V.I., Goleva E.A., Selemenev V.F., Karpov S.I., Smagin M.A. // Russ. J. Phys. Chem. A. 2019. V. 93. № 3. P. 542. https://doi.org/10.1134/S0036024419030221
  12. Голева Е.А., Васильева В.И., Селеменев В.Ф., Кузнецов В.А., Останкова И.В. // Сорбционные и хроматографические процессы. 2016. Т. 16. № 5. С. 640.
  13. Лоза С.А., Заболоцкий В.И., Лоза Н.В., Фоменко М.А. // Мембраны и мембранные технологии. 2016. Т. 6. № 4. С. 374. https://doi.org/10.1134/S221811721604009X
  14. Сафина Г.Ш., Дряхлов В.О., Галиханов М.Ф., Шайхиев Т.И., Фридланд С.В. // Вестн. Технолог. ун-та. 2015. Т. 18. № 14. С. 229.
  15. Пахотина И.Н., Осадчий Ю.П., Пахотин Н.Е. // Информационная среда вуза. 2016. № 1(23). С. 244.
  16. Осадченко С.В., Межуев Я.О., Коршак Ю.В., Штильман М.И. // Вестн. Нижегород. ун-та им. Н.И. Лобачевского. 2013. № 2(1). С. 79.
  17. http://www.vladipor.ru/catalog/show/ (дата обращения 07.02.2022).
  18. https://www.technofilter.ru/catalog/laboratory-filtration/filtry-dlya-laboratoriy/ (дата обращения 07.02.2022).
  19. Lazarev S.I., Kovalev S.V., Konovalov D.N., Lua P. // Russ. J. Electrochem. 2021. V. 57. № 6. P. 607. https://doi.org/10.1134/S1023193521050098
  20. Кнерельман Е.И., Яруллин Р.С., Давыдова Г.И., Старцева Г.П., Чуркина В.Я., Матковский П.Е., Алдошин С.М. // Вестн. Казан. технолог. ун-та. 2008. № 6. С. 68.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (65KB)
3.

Download (48KB)
4.

Download (80KB)
5.

Download (81KB)
6.

Download (40KB)

Copyright (c) 2023 Д.Н. Коновалов, И.В. Хорохорина, С.И. Лазарев, С.А. Нагорнов, А.Ю. Корнев, С.И. Котенев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».