Investigation of Factors Determining the Efficiency of Interaction of Aluminum Alloys Activated with the Ga–In Eutectic with Water in Hydrogen Cartridges

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using high-resolution X-ray diffraction and synchrotron radiation, as well as and scanning electron microscopy, it has been shown that the observed high reactivity of commercial aluminum alloys activated with the Ga–In eutectic is associated with the formation of the Al–Ga–In eutectic along grain boundaries in the entire material volume. The loss of material activity during storage under atmospheric conditions is due to the oxidation of the eutectic components. Activation with pure gallium leads to formation of AlGax solid solution, which has low activity in the reaction with water under neutral pH.

About the authors

A. I. Nizovskii

Boreskov Institute of Catalysis SB RAS

Author for correspondence.
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk

A. N. Shmakov

Boreskov Institute of Catalysis SB RAS; SRF “SKIF”, Boreskov Institute of Catalysis SB RAS

Email: niz@catalysis.ru
Russia, 630090, Novosibirsk; Russia, 630559, Kolcovo, Novosibirsk

A. V. Kulikov

Boreskov Institute of Catalysis SB RAS

Email: niz@catalysis.ru
Russia, 630090, Novosibirsk

E. A. Suprun

Boreskov Institute of Catalysis SB RAS

Email: niz@catalysis.ru
Russia, 630090, Novosibirsk

V. I. Bukhtiyarov

Boreskov Institute of Catalysis SB RAS

Email: niz@catalysis.ru
Russia, 630090, Novosibirsk

References

  1. Deng Z.-Y., Ferreira J.M.F., Sakka Y. // J. Am. Ceram. Soc. 2008. V. 91. Iss. 12. P. 3825. https://doi.org/10.1111/j.1551-2916.2008.02800.x
  2. Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M. // Renewable Sustainable Energy Rev. 2009. V. 13. Iss. 4. P. 845. https://doi.org/10.1016/j.rser.2008.02.009
  3. Sheindlin A.E., Zhuk A.Z. // Herald Russ. Academy Sci. 2010. V. 80. Iss. 2. P. 143. https://doi.org/10.1134/S101933161002005X
  4. Sheindlin A.E., Zhuk A.Z. // Russ. J. General Chem. 2007. V. 77. P. 778. https://doi.org/10.1134/S107036320704038X
  5. Shuo X.U., Jing L.I.U. // Front. Energy. 2019. V. 13. P. 27. https://doi.org/10.1007/s11708-018-0603-x
  6. Belitskus D. // J. Electrochem. Soc. 1970. V. 117. Iss. 8. P. 1097. https://doi.org/10.1149/1.2407730
  7. Kravchenko O.V., Semenenko K.N., Bulychev B.M., Kalmykov K.B. // J. Alloys Compd. 2005. V. 397. Iss. 1–2. P. 58. https://doi.org/10.1016/j.jallcom.2004.11.065
  8. Parmuzina A.V., Kravchenko O.V. // Int. J. Hydrogen Energy. 2008. V. 33. Iss. 12. P. 3073. https://doi.org/10.1016/j.ijhydene.2008.02.025
  9. Du Preez S.P., Bessarabov D.G. // Int. J. Electrochem. Sci. 2017. V. 12. Iss. 9. P. 8663. https://doi.org/10.20964/2017.09.22
  10. Du B.D., Wang W., Chen W., Chen D.M., Yang K. // Int. J. Hydrogen Energy. 2017. V. 42. Iss. 34. P. 21586. https://doi.org/10.1016/j.ijhydene.2017.07.105
  11. Liang J., Gao L.J., Miao N.N., Chai Y.J., Wang N., Song X.Q. // Energy. 2016. V. 113. P. 282. https://doi.org/10.1016/j.energy.2016.07.013
  12. Liu Y., Liu X., Chen X., Yang S., Wang C. // Int. J. Hydrogen Energy. 2017. V. 42. Iss. 16. P. 10943. https://doi.org/10.1016/j.ijhydene.2017.02.205
  13. Trenikhin M.V., Bubnov A.V., Nizovskii A.I., Duplyakin V.K. // Inorg. Mater. 2006. V. 42. Iss. 3. P. 256. https://doi.org/10.1134/S0020168506030083
  14. Nizovskii A.I., Bukhtiyarov V.I., Veligzhanin A.A., Zubavichus Y.V., Murzin V.Y., Chernyshov A.A., Khlebnikov A.S., Senin R.A., Kazakov I.V., Vorobyov A.A. // Crystallogr. Rep. 2012. V. 57. Iss. 5. P. 693. https://doi.org/10.1134/S1063774512050112
  15. Nizovskii A.I., Matvienko A.A., Rogozhnikov V.N., Tokarev M.M., Bukhtiyarov V.I. // Mater. Today: Proc. 2020. V. 25. Iss. 3. P. 505. https://doi.org/10.1016/j.matpr.2020.01.045
  16. Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M. // Renewable Sustainable Energy Rev. 2009. V. 13. Iss. 4. P. 845. https://doi.org/10.1016/j.rser.2008.02.009
  17. Wang W., Chen W., Zhao X.M., Chen D.M., Yang K. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 24. P. 18672. https://doi.org/10.1016/j.ijhydene.2012.09.164
  18. Liang J., Gao L.J., Miao N.N., Chai Y.J., Wang N., Song X.Q. // Energy. 2016. V. 113. P. 282. https://doi.org/10.1016/j.energy.2016.07.013
  19. Elitzur S., Rosenband V., Gany A. // Int. J. Hydrogen Energy. 2014. V. 39. Iss.12. P. 6328. https://doi.org/10.1016/j.ijhydene.2014.02.037
  20. Nandakumar N., Arularasu M. // Int. Res. J. Eng. Technol. (IRJET). 2015. V. 2. Iss. 6. P. 1245. https://www.irjet.net/archives/V2/i6/IRJET-V2I6187.pdf
  21. Jayaraman K., Chauveau C., Gökalp I. // Energy Power Eng. 2015. V. 7. P. 426.
  22. Liu S., Fan M.-Q., Wang C. et al. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 1. P. 1014. https://doi.org/10.1016/j.ijhydene.2011.03.029
  23. Liu D., Gao Q., An Q. et al. // Crystals. 2020. V. 10. Iss. 3. P. 167. https://doi.org/10.3390/cryst10030167
  24. Liu S., Fan M.-Q., Wang C. et al. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 1. P. 1014. https://doi.org/10.1016/j.ijhydene.2011.03.029
  25. Шейндлин А.Е., Жук А.З. // Рос. хим. журн. 2006. Т. L. № 6. С. 105.
  26. Rehbinder P.A., Shchukin E.D. // Progress Surf. Sci. 1972. V. 3. Iss. 2. P. 97. https://doi.org/10.1016/0079-6816(72)90011-1
  27. Nizovskii A.I., Kulikov A.V., Trenikhin M.V., Bukhtiyarov V.I. // Catal. Sustain. Energy. 2017. V. 4. Iss. 1. P. 62. https://doi.org/10.1515/cse-2017-0010
  28. Hugo R.C., Hoagland R.G. // Acta Mater. 2000. V. 48. Iss. 8. P. 1949. https://doi.org/10.1016/S1359-6454(99)00463-2
  29. Ziebarth J.T., Woodall J.M., Kramer R.A., Go C. // Int. J. Hydrogen Energy. 2011. V. 36. Iss. 9. P. 5271. https://doi.org/10.1016/j.ijhydene.2011.01.127
  30. Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов. М.: Металлургия, 1979. 640 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (76KB)
3.

Download (639KB)
4.

Download (472KB)
5.

Download (83KB)
6.

Download (83KB)
7.

Download (1MB)

Copyright (c) 2023 А.И. Низовский, А.Н. Шмаков, А.В. Куликов, Е.А. Супрун, В.И. Бухтияров

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».