Non-drude-like behavior of the photoinduced dielectric permittivity of GaAs and Si in the gigahertz range frequencies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A non-drude-like behavior of the real part of the photoinduced permittivity ReåP of GaAs and Si samples in the gigahertz range was detected by direct resonator measurements under conditions of fiber-optic irradiation at a wavelength of ë = 0.97 microns with power changes P in the range of 0÷1 W. It is shown that, in accordance with the hypothesis of the exciton mechanism of the photoinduced microwave dielectric permittivity, ReåP increases with increasing P (approaching saturation above P = 200 mW) instead of decreasing within the framework of free charge carriers by Drude. The generality of the behavior of the real parts of the photoinduced permittivity observed in semiconductors of different types (straight-band GaAs and non-straight-band Si) in different electrodynamic systems (waveguides, resonators, metastructures) testifying to the universality of the exciton mechanism is demonstrated. Optically controlled metastructures in the GHz band containing resonant electrically conductive elements loaded with GaAs and Si samples are proposed for the first time: a metastructure based on linear dipoles and a half-wave electric dipole based on a multi-pass spiral. Gigahertz responses of metastructures and the transformation of responses associated with changes in the dielectric permittivity of Si and GaAs during photoexcitation were measured for the first time. Based on the hypothesis put forward about the effect of excitons on photoexcitation, the observed saturation effect of gigahertz photoinduced permittivity is discussed.

Full Text

Restricted Access

About the authors

V. S. Butylkin

Kotelnikov Institute of Radioengineering and Electronics RAS

Author for correspondence.
Email: vasebut@yandex.ru

Фрязинский филиал 

Russian Federation, 141190, Fryazino

G. A. Kraftmakher

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: gaarkr139@mail.ru

Фрязинский филиал 

Russian Federation, 141190, Fryazino

P. S. Fisher

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: fisherps@mail.ru

Фрязинский филиал 

Russian Federation, 141190, Fryazino

References

  1. Chen H.T., O’Hara J.F., Azad A.K., Taylor A.J. // Laser Photonics Rev. 2011. V. 5. Iss. 4. P. 513. https://doi.org/10.1002/lpor.201000043
  2. Padilla W.J., Taylor A.J., Highstrete C., Lee M., Averitt R.D. // Phys. Rev. Lett. 2006. V. 96. P. 107401. https://doi.org/10.1103/PhysRevLett.96.107401
  3. Chen H.T., Padilla W.J., Zide J., Gossard A.C., Tay-lor A.J., Averitt R.D. // Nature. 2006. V. 444. P. 597. https://www.doi.org/10.1038/nature05343
  4. Xiao S., Wang T., Jiang X., Liu T., Zhou C., Zhang J. // J. Phys. D: Appl. Phys. 2020. V. 53. P. 503002. https://www.doi.org/10.1088/1361-6463/abaced
  5. Manceau J.M., Shen N.-H., Kafesaki M., Soukoulis C.M., Tzortzakis S. // Appl. Phys. Lett. 2010. V. 96. P. 021111. https://www.doi.org/10.1063/1.3292208
  6. Zhou J., Chowdhury D.R., Zhao R., Azad A.K., Chen H.-T., Soukoulis C.M., Taylor A.J., Hara J.F. // Phys. Rev. B. 2012. V. 86. № 3. P. 035448. https://doi.org/10.1103/PhysRevB.86.035448
  7. Nemati A., Wang Q., Hong M. H., Teng J. H. // Opto-Electron Advances. 2018. V. 1. № 18. P.180009. https://www.doi.org/10.29026/oea.2018.180009
  8. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н., Мальцев В.П., Фишер П.С. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586. https://www.doi.org/10.31857/S1234567821210023
  9. Бутылкин В.С., Фишер П.С., Крафтмахер Г.А., Казанцев Ю.Н., Каленов Д.С., Мальцев В.П., Пархоменко М.П. // Радиотехника и электроника. 2022. Т. 67. № 12. С. 1185. https://www.doi.org/10.31857/S0033849422120038
  10. Маделунг О. Теория твердого тела. М.: Наука, 1980. 414 с.
  11. Rizza C., Ciattoni A., De Paulis F., Orlandi A., Palan-ge E., Colombo L. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 135103. https://www.doi.org/10.1088/0022-3727/48/13/135103
  12. Рогалин В.Е., Каплунов И.А., Кропотов Г.И. // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851. https://www.doi.org/10.21883/OS.2018.12.46951.190-18
  13. Busch S., Scherger B., Scheller M., Koch M. //Optics Lett. 2012. V. 37. № 8. P. 1391. https://doi.org/10.1364/OL.37.001391
  14. Мусаев А.М. // Физика и техника полупроводников. 2017. Т. 51. № 10. С. 1341. https://www.doi.org/10.21883/FTP.2017.10.45010.8520
  15. Бутылкин В.С., Фишер П.С., Крафтмахер Г.А., Казанцев Ю.Н., Каленов Д.С., Мальцев В.П., Пархоменко М.П. // Радиотехника и Электроника. 2023. Т. 68. № 2. С. 152. https://www.doi.org/10.31857/S003384942302002X
  16. Агекян В.Ф. // Соросовский образовательный журн. 2000. Т. 6. № 10. С. 101.
  17. Днепровский В.С. // Соросовский образовательный журн. 2000. Т.6. № 8. С. 88.
  18. Кашкаров П.К., Тимошенко В.Ю. // Оптика твердого тела и систем пониженной размерности. М.: Физический факультет МГУ, 2009. С. 190.
  19. Нокс Р. Теория экситонов. М.: Мир, 1966.
  20. Лакс Б., Баттон К. Сверхвысокочастотные ферриты и ферримагнетики, М.: Мир, 1965. 675 с.
  21. Казанцев Ю.Н., Крафтмахер Г.А. // ФММ. 1989. Т. 67. № 5. С. 902.
  22. Kraftmakher G., Butylkin V., Kazantsev Y., Mal’tsev V. // Electron. Lett. 2017. V. 53. № 18. P. 1264. https://www.doi.org/10.1049/el.2017.1886
  23. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. М.: Наука, 1977.
  24. Собельман И.И. Введение в теорию атомных спектров. М.: Физматгиз, 1963, С. 640.
  25. Файн В.М. Фотоны и нелинейные среды М.: Сов. Радио, 1972.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of the permittivity of Si (1) and GaAs (2) measured in a waveguide resonator (4.7 GHz) depending on the optical irradiation power P (at a wavelength of λ = 0.97 μm) relative to P = 0: a – δReεP; b – ΔReεP; c – Δf; d – δImεP.

Download (500KB)
3. Fig. 2. M1 metastructure based on resonant copper wires in combination with an orthogonally and asymmetrically arranged copper strip 1 with a gap 2 loaded with Si: a – appearance; b – resonant response of the passage of a copper strip T, measured in a rectangular waveguide with M1 metastructure at P = 0 (1); 80 (2); 550 MW (3); 1 Watt (4).

Download (538KB)
4. Fig. 3. An electric half–wave dipole based on a multi–pass spiral of copper wires around a GaAs core: a - appearance; b - resonant response of passage T, measured in free space at P = 0 (1); 60 (2); 100 (3); 120 MW (4).

Download (282KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».