Структура поверхностных ступенек в деформированном аморфном сплаве Zr62Cu22Fe6Al10

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами рентгенографии и растровой электронной микроскопии исследована структура боковых поверхностей образцов массивного аморфного сплава Zr62Cu22Fe6Al10 до и после деформации сжатием при комнатной температуре. Образцы аморфного сплава после получения имели квадратное сечение 5×5 мм и длину 40 мм. Исследование морфологии боковых поверхностей образцов проводили с целью избежать влияния на структуру образцов поверхности инструмента, используемого при деформации. Пластическая деформация аморфных сплавов происходит путем образования и распространения полос сдвига. При деформации сжатием при комнатной температуре на торцевых поверхностях образца сформировалась система ступенек, вызванная выходом на поверхность полос сдвига. Ступеньки на поверхностях имеют разные размеры (толщину и высоту). Установлено, что структура больших ступенек сложная: они состоят из элементарных ступенек толщиной 15–30 нм. По величине ступенек оценена локальная деформация образцов. Обнаружено образование при деформации малого количества нанокристаллов. Кристаллы имеют размеры приблизительно 10 нм. Полученные результаты открывают новое направление исследований структуры деформированных аморфных сплавов и процессов нанокристаллизации под действием деформации.

Об авторах

Г. Е. Абросимова

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: aronin@issp.ac.ru
Россия, Черноголовка

Н. А. Волков

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: aronin@issp.ac.ru
Россия, Черноголовка

А. С. Аронин

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Автор, ответственный за переписку.
Email: aronin@issp.ac.ru
Россия, Черноголовка

Список литературы

  1. Greer A.L., Cheng Y.Q., Ma, E. // Mater. Sci. Eng. R Rep. 2013. V. 74. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  2. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater.2005. V. 53. P. 823. https://www.doi.org/10.1016/j.scriptamat.2005.06.004
  3. Ma G.Z., Song K.K., Sun B.A., Yan Z.J., Kühn U., Chen D., Eckert J. // J. Mater. Sci.2013. V. 48. P.6825. https://www.doi.org/10.1007/s10853-013-7488-1.
  4. Maaß R., Löffler J.F. // Adv. Funct. Materials.2015. V. 25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  5. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert, J. // Scr. Mater.2020. V. 178. P. 57. https://www.doi.org/10.1016/j.scriptamat.2019.11.006
  6. Hebert R.J., Boucharat N., Perepezko J.H., Rösner H., Wilde G. // J. Alloys Compd. 2007. V. 434-435. P. 18. https://www.doi.org/10.1016/j.jallcom.2006.08.134
  7. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  8. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://www.doi.org/10.1016/j.actamat.2021.116785
  9. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. P. 251904. https://doi.org/10.1063/1.3602315
  10. Kang S.J., Cao Q.P., Liu J., Tang Y., Wang X.D., Zhang D.X., Ahn I. S., Caron A., Jiang J.Z. // J. Alloys Compd. 2019. V. 795. P. 493. https://doi.org/10.1016/j.jallcom.2019.05.026
  11. Abrosimova G., Aronin A., Barkalov O., Matveev D., Rybchenko O., Maslov V., Tkatch V. // Phys. Solid State. 2011. V. 53. P. 229. https://www.doi.org/10.1134/S1063783411020028
  12. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  13. Chen N., Frank R., Asao N., Louzguine-Luzgin D.V., Sharma P., Wang J.Q., Xie G.Q., Ishikawa Y., Hatakeyama N., Lin Y.C. // Acta Mater.2011. V. 59. P. 6433. https://www.doi.org/10.1016/j.actamat.2011.07.007.
  14. Pan J., Chen Q., Liu L., Li Y. // Acta Mater.2011. V. 59. P. 5146. https://www.doi.org/10.1016/j.actamat.2011.04.047.
  15. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater.2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  16. Maaß R., Löffler J.F. // Adv. Funct. Materials2015. V.25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  17. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
  18. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A. L. // Sci. Rep. 2016. V. 6. P.25832. https://www.doi.org/10.1038/srep25832.
  19. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 577. P. 121279. https://www.doi.org/10.1016/j.jnoncrysol.2021.121279
  20. Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://www.doi.org/10.1016/j.matlet.2023.134478
  21. Aronin A.S., Volkov N.A., Pershina E.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V.18. P. 27. https://www.doi.org/10.1134/S1027451024010051
  22. Абросимова Г.Е., Аронин А.С., Холстинина Н.Н. // ФТТ. 2010. Т. 52. Р. 417.
  23. Glezer А.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogozhev Y.S. // Mater. Lett. 2019. V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.12663
  24. Abrosimova G., Aksenov O., Volkov N., Matveev D., Pershina E., Aronin A. // Metals. 2024 V. 14. P. 771. https://doi.org/0.3390/met14070771

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».