Study of silicon dioxide sputtering by a focused gallium ion beam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Test structures in the form of rectangular boxes fabricated on thermal silicon dioxide substrates under normal and oblique ion bombardment using the focused ion beam technique were studied by transmission electron microscopy and energy-dispersive X-ray microanalysis. The experimentally obtained depth distribution profiles for gallium atoms, as well as the sputtering yields, were compared with the results of Monte Carlo simulations. Calculations were carried out using standard continuous and discrete-continuous models for the surface binding energy of atoms in silicon dioxide. For the normal incidence of the ion beam, based on minimizing the value of the R-factor, which characterizes the agreement between the calculated and experimental data, the optimal values of the parameters of the discrete-continuous model were found, which turned out to be close to the values used in the continuous model. It is shown that the obtained parameters make it possible to simulate silicon dioxide sputtering with acceptable accuracy at ion beam incidence angles of 15° and 30°. However, at a grazing incidence angle of 80°, significant differences arise between the experimental and calculated profiles of the concentration of gallium atoms implanted in silicon dioxide.

About the authors

О. V. Podorozhniy

National Research University of Electronic Technology

Author for correspondence.
Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

А. V. Rumyantsev

National Research University of Electronic Technology

Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

R. L. Volkov

National Research University of Electronic Technology

Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

N. I. Borgardt

National Research University of Electronic Technology

Email: lemi@miee.ru
Russian Federation, Zelenograd, Moscow

References

  1. Sloyan K., Melkonyan H., Dahlem M.S. // Int. J. Adv. Manuf. Technol. 2020. V. 107. P. 4469. https://doi.org./10.1007/s00170-020-05327-5
  2. Ribeiro R.S.R., Dahal P., Guerreiro A., Jorge P.A.S., Viegas J. // Sci. Rep. 2016. V. 7. P. 4485. https://doi.org./10.1038/s41598-017-04490-2
  3. Nayak K.P., Kien F.L., Kawai Y., Hakuta K., Nakajima K., Miyazaki H.T., Sugimoto Y. // Opt. Express. 2011. V. 19. № 15. P. 14040. https://doi.org./10.1364/OE.19.014040
  4. Cabrini S., Liberale C., Cojoc D., Carpentiero A., Prasciolu M., Mora S., Degiorgio V., De Angelis F., Di Fabrizio E. // Microelectron. Eng. 2006. V. 83. P. 804. https://doi.org./10.1016/j.mee.2006.01.247
  5. Berthelot J., Aćimović S.S., Juan M.L., Kreuzer M.P., Renger J., Quidant R. // Nat. Nanotechnol. 2014. V. 9. P. 295. https://doi.org./10.1038/NNANO.2014.24
  6. Mayer J., Giannuzzi L.A., Kamino T., Michael J. // MRS Bull. 2007. V. 32. № 5. P. 400. https://doi.org./10.1557/mrs2007.63
  7. Han Zh., Vehkamäki M., Leskelä M., Ritala M. // Nanotechnology. 2014. V. 25. P. 115302. https://doi.org./10.1088/0957-4484/25/11/115302
  8. Kim H. B., Hobler G., Steiger A., Lugstein A., Bertagnolli E., Platzgummer E., Loeschner H. // Int. J. Precis. Eng. Manuf. 2011. V. 12. P. 893. https://doi.org./10.1007/s12541-011-0119-3
  9. Alkemade P.F.A. // Phys. Rev. Lett. 2006. V. 96. P. 107602. https://doi.org./10.1103/PhysRevLett.96.107602
  10. Kim H.B. // Microelectron. Engin. 2011. V. 88. № 11. P. 3365. https://doi.org./10.1016/j.mee.2011.07.008
  11. Mahady K.T., Tan S., Greenzweig Y., Raveh A., Rack P.D. // Nanotechnology. 2018. V. 29. № 49. P. 495301. https://doi.org./10.1088/1361-6528/aae183
  12. Rumyantsev A.V., Borgardt N.I., Volkov R.L., Chaplygin Y.A. // Vacuum. 2022 202. P.111128. https://doi.org./10.1016/j.vacuum.2022.111128
  13. Seah M.P., Nunney T.S. // J. Phys. D. 2010. V. 43. № 25. P. 253001. https://doi.org./10.1088/0022-3727/43/25/253001
  14. Duan G., Xing T., Li Y. // AOMATT. SPIE. 2012. V. 8416. P. 585. https://doi.org.10.1117/12.973697
  15. Mutzke A., Schneider R., Eckstein W., Dohmen R., Schmid K., von Toissaint U., Bandelow G. SDTrimSP Version 6.00 IPP Report 2019-2, 2019. 91 p.
  16. Бачурин В.И., Кривелевич С.А., Потапов Е.В., Чурилов А.Б // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2007. № 3. С. 19.
  17. Бачурин В.И., Изюмов М.О., Амиров И.И., Шуваев Н.О. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 146. https://doi.org.10.7868/S0367676518020035
  18. Kudriavtsev Y., Villegas A., Godines A., Asomoza R. // Appl. Surf. Sci. 2005. V. 239. № 3–4. P. 273. https://doi.org.10.1016/j.apsusc.2004.06.014
  19. Румянцев А.В., Подорожний О.В., Волков Р.Л., Боргардт Н.И. // Изв. вузов. Электроника. 2023. Т. 28. № 5. С. 555. https://doi.org.10.24151/1561-5405-2023-28-5-555-568
  20. Румянцев А.В., Подорожний О.В., Волков Р.Л., Боргардт Н.И. // Изв. вузов. Электроника. 2022. Т. 27. № 4. С. 463. https://doi.org.10.24151/1561-5405-2022-27-4-463-474
  21. Mutzke A., Bandelow G., Schmid K. News in SDTrimSP Version 5.05, 2015. 46 p.
  22. El-Kareh B., Hutter L.N. Fundamentals of Semiconductor Processing Technology. New York: Springer Science & Business Media, 1995. 602 p. https://doi.org.10.1007/978-1-4615-2209-6
  23. Eckstein W. Computer Simulation of Ion-Solid Interactions. Berlin–Heidelberg: Springer, 2013. 296 p. https://doi.org.10.1007/978-3-642-73513-4
  24. Румянцев А.В., Боргардт Н.И., Волков Р.Л. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 6. С. 102. https://doi.org.10.7868/S0207352818060197
  25. Hofmann S., Thomas III J.H. // J. Vac. Sci. Technol. B. 1983. V. 1. № 1. P. 43. https://doi.org.10.1116/1.582540

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».