Methods for Increasing the Efficiency of the Electroforming Process of Open Metal–Insulator–Metal Sandwich Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The metal–insulator–metal sandwich structures with the end surface of the insulator film (insulating slit) open to the gas environment were manufactured using thin-film technology. Electroforming, which consists of applying voltage according to a specific algorithm, causes the formation of conductive phase particles due to the destruction of organic molecules adsorbed on the open surface of the insulator by electron impact during the electric current flow. The accumulation of particles leads to the growth of a linked conductive cluster (a conductive carbon medium) and the formation of a conductive nanostructure with the memristor properties in the insulating slit. The practical use of such structures is limited by the low efficiency of electroforming: relatively long process times (on the order of several seconds) and an increased probability of electrical breakdown of the structure. Several ways to improve the efficiency of the electroforming process are presented. Firstly, the use of the correct voltage polarity for the open TiN–SiO2–W sandwich structure, when W should be the anode, which sharply reduces the probability of breakdown. Secondly, the use of two-stage electroforming: first, the formation of conductive channels in an “oil-free” vacuum after annealing in it, when the voltage can be applied in parallel to a large number of structures, and then in an “oil” vacuum containing organic molecules, at significantly lower voltages and exposures. Thirdly, replacing the tungsten anode with a molybdenum one, which, while maintaining the advantages of tungsten, leads to an increase in the initial conductivity of the open sandwich structure (TiN–SiO2–Mo) by several orders of magnitude, and therefore to an acceleration of the electroforming process and a decrease in the applied voltages.

Full Text

Restricted Access

About the authors

V. M. Mordvintsev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Author for correspondence.
Email: Mordvintsev-Viktor@yandex.ru
Russian Federation, Yaroslavl, 150067

E. S. Gorlachev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: Mordvintsev-Viktor@yandex.ru
Russian Federation, Yaroslavl, 150067

S. E. Kudryavtsev

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: Mordvintsev-Viktor@yandex.ru
Russian Federation, Yaroslavl, 150067

References

  1. Chua L. // Appl. Phys. A. 2011. V. 102. P. 765. https://doi.org.10.1007/s00339-011-6264-9
  2. Yang J.J., Strukov D.B., Stewart D.R. // Nat. Nanotechnol. 2013. V. 8. P. 13. https://doi.org.10.1038/nnano.2012.240
  3. Abunahla H., Mohammad B. Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Cham: Springer, 2018. 106 p.
  4. Sun W., Gao B., Chi M., Xia Q., Yang J.J., Qian H., Wu H. // Nat. Commun. 2019. V. 10. P. 3453. https://doi.org.10.1038/s41467-019-11411-6
  5. Фадеев А.В., Руденко К.В. // Микроэлектроника. 2021. Т. 50. № 5. С. 347. https://doi.org.10.31857/S0544126921050021
  6. Sung C., Hwang H., Yoo I.K. // J. Appl. Phys. 2018. V. 124. P. 151903. https://doi.org.10.1063/1.5037835
  7. Ielmini D., Wang Z., Liu Y. // APL Mater. 2021. V. 9. P. 050702. https://doi.org.10.1063/5.0047641
  8. Huang Y., Kiani F., Ye F., Xia Q. // Appl. Phys. Lett. 2023. V. 122. P. 110501. https://doi.org.10.1063/5.0133044
  9. Kumar D., Aluguri R., Chand U., Tseng T.Y. // Ceram. Int. 2017. V. 43. P. S547. https://doi.org.10.1016/j.ceramint.2017.05.289
  10. Prasad O.K., Chandrasekaran S., Chung C.-H., Chang K.-M., Simanjuntak F.M. // Appl. Phys. Lett. 2022. V. 121. P. 233505. https://doi.org.10.1063/5.0123583
  11. Koroleva A.A., Kuzmichev D.S., Kozodaev M.G., Zabrosaev I.V., Korostylev E.V., Markeev A.M. // Appl. Phys. Lett. 2023. V. 122. P. 022905. https://doi.org.10.1063/5.0138218
  12. Ielmini D. // Semicond. Sci. Technol. 2016. V. 31. P. 063002. https://doi.org.10.1088/0268-1242/31/6/063002
  13. Исаев А.Г., Пермякова О.О., Рогожин А.Е. // Микроэлектроника. 2023. Т. 52. № 2. С. 127. https://doi.org.10.31857/S0544126923700242
  14. Liu P., Luo H., Yin X., Wang X., He X., Zhu J., Xue H., Mao W., Pu Y. // Appl. Phys. Lett. 2022. V. 121. P. 233501. https://doi.org.10.1063/5.0127880
  15. Wen X., Tang W., Lin Z., Peng X., Tang Z., Hou L. // Appl. Phys. Lett. 2023. V. 122. P. 173301. https://doi.org.10.1063/5.0147149
  16. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. P. 1801187. https://doi.org.10.1002/adma.201801187
  17. Wang Y., Chen Y.-T., Xue F., Zhou F., Chang Y.-F., Fowler B., Lee J.C. // Appl. Phys. Lett. 2012. V. 100. P. 083502. https://doi.org.10.1063/1.3687724
  18. Захаров П.С., Итальянцев А. Г. // Труды МФТИ. 2015. Т. 7. № 2. С. 113.
  19. Тихов C.B., Горшков О.Н., Антонов И.Н., Касаткин А.П., Королев Д.С., Белов А.И., Михайлов А.Н., Тетельбаум Д.И. // ЖТФ. 2016. Т. 86. Вып. 5. С. 107. http://journals.ioffe.ru/articles/viewPDF/43081
  20. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 174.
  21. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 183.
  22. Мордвинцев В.М., Шумилова Т.К. // Микроэлектроника. 1999. Т. 28. № 2. С. 122.
  23. Мордвинцев В.М., Горлачев Е.С., Кудрявцев С.Е. // Микроэлектроника. 2022. Т. 51. № 4. С. 304. https://doi.org.10.31857/S0544126922040093
  24. Мордвинцев В.М., Кудрявцев С.Е., Наумов В.В., Горлачев Е.С. // Микроэлектроника. 2023. Т. 52. № 5. С. 431. https://doi.org.10.31857/S0544126923700515
  25. Патент № 2769536 (РФ). Способ электроформовки при изготовлении элемента памяти / ФТИАН РАН. Мордвинцев В.М., Горлачев Е.С., Кудрявцев С.Е. // Официальный бюлл. “Изобретения. Полезные модели” Федеральной службы по интеллектуальной собственности (Роспатент). 2022. № 10.
  26. Горлачев Е.С., Мордвинцев В.М., Кудрявцев С.Е. // Микроэлектроника. 2024. Т. 53. № 1. С. 74.
  27. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. // ЖТФ. 2018. Т. 88. Вып. 11. С. 1681. https://doi.org.10.21883/JTF.2018.11.46630.2551

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of open ‘sandwich’-MDM-structure after electroforming: 1 - lower electrode from TiN (anode); 2 - layer of ‘natural’ oxide on the surface of the lower electrode (TiO2); 3 - SiO2 layer with thickness about 20 nm; 4 - upper electrode from W or Mo (cathode); 5 - conducting nanostructure; 6 - insulating gap with variable width h ≈ 1 nm; 7 - insulating slot.

Download (151KB)
3. Fig. 2. Typical VAC (U - voltage between electrodes, ‘minus’ at the upper W electrode, J - current through the structure) of the electroforming process of an open “sandwich” TiN-SiO2-W structure in an ‘oil’ vacuum. Parameters of the triangular voltage pulse: amplitude 10.5 V, voltage change rate 2 V/s. Current limitation at the level of 190 μA.

Download (50KB)
4. Fig. 3. Typical quasi-static VACs of open ‘sandwich’ TiN-SiO2-W structures in ‘oil’ vacuum after electroforming. The rate of voltage change is 2 V/s. The polarity of voltage U: 1 - ‘plus’ on W; 2 - ‘minus’ on W.

Download (52KB)
5. Fig. 4. Characteristic quasi-static VACs of open ‘sandwich’ TiN-SiO2-W structures in ‘oil-free’ vacuum after their annealing (200°C, 60 min in ‘oil-free’ vacuum, first stage of electroforming). Voltage change rate of 2 V/s. Voltage passages up to 14 V: 1 - first; 2 - third.

Download (74KB)
6. Fig. 5. Typical VAC of the electroforming process of an open ‘sandwich’ TiN-SiO2-W structure in “oil” vacuum after its annealing (200°C, 60 min in ‘oil-free’ vacuum) and one voltage pass up to 14 V (similar to curve 1 in Fig. 4) in ‘oil-free’ vacuum (the second stage of electroforming). The rate of voltage change is 2 V/s.

Download (39KB)
7. Fig. 6. Characteristic initial currents (before formation of conductive phase particles) in open ‘sandwich’ structures: 1 - TiN-SiO2-W; 2 - TiN-SiO2-Mo. The rate of voltage change is 2 V/s.

Download (47KB)
8. Fig. 7. Typical VAC of the electroforming process of an open TiN-SiO2-Mo sandwich structure in ‘oil-free’ vacuum (without pre-annealing and voltage pass). The rate of voltage change is 2 V/s.

Download (52KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».