Study of the Influence of Carbon Barrier Layers on the Structural and Reflective characteristics of Multilayer X-ray Mirrors Based on a Pair of Cr/V Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of a study of the structural parameters and reflective characteristics of multilayer X-ray mirrors based on a pair of chromium and vanadium materials. These structures are optimized for the spectral range of 2.42–2.73 nm. An important practical application of such structures is X-ray microscopy, which allows the study of biological samples in real time. In this case, it is necessary to provide the highest possible reflectivity of X-ray mirrors in order to obtain the highest possible temporal resolution during biological research. In this work, it was shown that Cr/V structures have high sizes of transition regions (interfaces), which in turn reduce the reflectivity of the mirror. It was also found that the structure has symmetrical interface profiles between layers of different materials. To reduce the size of the transition regions, an interface engineering technique was used, within the framework of which barrier layers of carbon were added to the structure, which made it possible to significantly reduce the width of the interfaces, which, in turn, leads to an increase in the reflection coefficient.

About the authors

R. A. Shaposhnikov

Institute of Physics of Microstructures RAS

Email: shaposhnikov-roma@mail.ru
Afonino, Russia

V. N. Polkovnikov

Institute of Physics of Microstructures RAS

Afonino, Russia

N. I. Chkhalo

Institute of Physics of Microstructures RAS

Afonino, Russia

References

  1. Зеркальная рентгеновская оптика. / Ред. Виноградов А.В. Ленинград: Машиностроение, 1989. 463 с.
  2. Kirz J., Jacobsen C., Howells M. // Rev. Biophys. 1995. V. 28. P. 130. https://www.doi.org/10.1017/S0033583500003139
  3. Berglund M., Rymell L., Peuker M., Wilhein T., Hertz H.M. // J. Microscopy. 2000. V. 197. № 3. P. 268. https://www.doi.org/10.1046/j.1365-2818.2000.00675.x
  4. Brewer C.A., Brizuela F., Wachulak P., Martz D.H., Chao W., Anderson E.H., Attwood D.T., Vinogradov A.V., Artyukov I.A., Ponomareko A.G., Kondratenko V.V., Marconi M.C., Rocca J.J., Menoni C.S. // Opt. Lett. 2008. V. 33. P. 518. https://www.doi.org/10.1364/OL.33.000518
  5. Chkhalo N.I., Pestov A.E., Salashchenko N.N., Sherbakov A.V., Skorokhodov E.V., Svechnikov M.V // Rev. Sci. Instrum. 2015. V. 86. P. 063701. https://www.doi.org/10.1063/1.4921849
  6. Малышев И.В., Пестов А.Е., Полковников В.Н., Реунов Д.Г., Торопов М.Н., Чхало Н.И., Ракшун Я.В., Хомяков Ю.В., Чернов В.А., Щелоков И.А. // Поверхность. Рентген., синхрог. нейтрон. исслед. 2023. № 5. С. 3. https://www.doi.org/10.31857/S1028096023050126
  7. Ghafoor N., Persson P., Birch J., Eriksson F., Schafers F. // Appl. Opt. 2006. V. 45. № 1. P. 137. https://www.doi.org/10.1364/AO.45.000137
  8. Гарахин С.А., Антюшин Е.С., Барышева М.М., Пестов А.Е., Полковников В.Н., Плешков Р.С., Смертин Р.М., Чхало Н.И. // Журнал технической физики. 2024. Т. 94. № 8. С. 1250. https://www.doi.org/10.61011/JTF.2024.08.58552.162-24
  9. Burcklen C., de Rossi S., Meltchakov E., Dennetière D., Capitanio B., Polack F., Delmotte F. // Opt. Lett. 2017. V. 42. № 10. P. 1927. https://www.doi.org/10.1364/OL.42.001927
  10. Полковников В.Н., Гарахин С.А., Квашенников Д.C., Малышев И.В., Салащенко Н.Н., Свечников М.В., Смертин Р.М., Чхало Н.И. // ЖТФ. 2020. Т. 90. № 11. С. 1893. https://www.doi.org/10.21883/JTF.2020.11.49980.143-20
  11. Smertin R.M., Barysheva M.M., Chkhalo N.I., Garakhin S.A., Malyshev I.V., Polkovnikov V.N. // Opt. Exp. 2024. V. 32. № 15. P. 26583. https://www.doi.org/10.1364/OE.524921
  12. Gullikson E.M., Salmassi F., Aquila A.L., Dollar F. Progress in Short Period Multilayer Coatings for Water Window Applications, Lawrence Berkeley National Laboratory (2008). http://escholarship.org/uc/item/8hv7q0hj
  13. Huang Q., Fei J., Liu Y., Li P., Wen M., Xie C., Jonnard P., Giglia A., Zhang Z., Wang K., Wang Z. // Opt. Lett. 2016. V. 41. № 4. P. 701. https://www.doi.org/10.1364/OL.41.000701
  14. Qi R., Huang Q., Fei J., Kozhevnikov I.V., Liu Y., Li P., Zhang Z., Wang Z. // Materials. 2019. V. 12. P. 2936. https://www.doi.org/10.3390/mal2182936
  15. Забродин И.Г., Закалов Б.А., Каськов И.А., Клюенков Е.Б., Полковников В.Н., Салащенко Н.Н., Стариков С.Д., Суслов Л.А. // Поверхность. Рентген., синхрог. нейтрон. исслед. 2013. № 7. С. 37. https://www.doi.org/10.7868/S0207352813070202
  16. Полковников В.Н., Салащенко Н.Н., Свечников М.В., Чхало Н.И. // УФН. 2020. Т. 190. С. 92. https://www.doi.org/10.3367/UFNr.2019.05.038623
  17. Andreev S.S., Akhsakhalyan A.D., Bibishkin M.A., Chkhalo N.I., Gaponov S.V., Gusev S.A., Kluenkov E.B., Prokhorov K.A., Salashchenko N.N., Schäfers F., Zuev S.Yu.. // Centr. Europ. J. Phys. 2003. V. 1. P. 191. https://www.doi.org/10.2478/BF02475561
  18. Svechnikov M. // J. Appl. Cryst. 2024. V. 57. P. 848. https://www.doi.org/10.1107/S1600576724002231
  19. Svechnikov M. // J. Appl. Cryst. 2020. V. 53. https://www.doi.org/10.1107/S160057671901584X
  20. X-Ray Interactions with Matter (2023) Center for X-Ray Optics, Berkeley, CA, USA. https://henke.lbl.gov/optical_constants/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).