Simple Optical Layout with a Diamond Crystal Monochromator for X-Ray Spectromicroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study introduces a concept for an undulator beamline at a synchrotron radiation facility designed to combine confocal X- ray fluorescence microscopy (confocal µXRF) with micro- X- ray absorption near edge structure spectroscopy (µXANES). The optical layout employs a compact diamond channel- cut monochromator positioned near the focus of the undulator beam. The analysis includes an evaluation of the thermal load on the diamond monochromator and a simulation of the steady- state temperature distribution and thermally induced deformations in the crystal under water- cooling conditions. In maximum thermal load regime, the slope error of the deformed surface of the crystal's first lamella remains significantly smaller than the angular convergence of the undulator beam, its angular size at the sample, and the rocking curve width of the crystal. The study also estimates the energy resolution of the diamond monochromator C(111), considering both the beam convergence and the temperature difference between the crystal lamellae. The results demonstrate that a diamond monochromator can operate near the focus of a high- power undulator beam at a fourth- generation synchrotron source, confirming the feasibility of the proposed beamline design.

About the authors

Yu. V Khomyakov

Budker Institute of Nuclear Physics SB RAS; SRF SKIF

Email: yu.v.khomyakov@yandex.ru
Novosibirsk, Russia; Koltsovo, Russia

M. V Gorbachev

Novosibirsk State Technical University

Novosibirsk, Russia

V. A Chernov

Budker Institute of Nuclear Physics SB RAS

Novosibirsk, Russia

F. A Darin

SRF SKIF

Koltsovo, Russia

Ya. V Rakshun

Budker Institute of Nuclear Physics SB RAS; V. S. Sobolev Institute of Geology and Mineralogy SB RAS

Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Дарьин Ф.А. Развитие метода конфокальной рентгеновской микроскопии для исследования микровключений в различные геологические матрицы: Дисс. канд. техн. наук. Новосибирск: Институт ядерной физики им. Г.И. Будкера СО РАН, 2022. 141 с.
  2. Lühl L., Hesse B., Mantouvalou I., Wilke M., Mahlkow S., Aloupi-Siotis E., Kanngiesser B. // Anal. Chem. 2014. V. 86. № 14. P. 6924. https://www.doi.org/10.1021/ac500990k
  3. Darin F., Sorokoletov D., Rakshun I., Darin A., Volodin A., Kriventsov V. // AIP Conf. Proc. 2020. V. 2299. № 1. P. 080005. https://www.doi.org/10.1063/5.0030495
  4. Tasca K.R., Petrov I., Deiter C., Martyushov S., Polyakov S., Rodriguez-Fernandez A., Shayduk R., Sinn H., Terentyev S., Vannoni M., Zholudev S., Samoylova L. // J. Phys.: Conf. Ser. 2022. V. 2380. № 1. P. 012053. https://www.doi.org/10.1088/1742-6596/2380/1/012053
  5. Baranov G., Bogomyagkov A., Morozov I., Sinyatkin S., Levichev E. // Phys. Rev. Accel. Beams 2021. V. 24. № 12. P. 120704. https://www.doi.org/10.1103/PhysRevAccelBeams.24.120704
  6. Shkaruba V.A., Bragin A.V., Volkov A.A., Erokhin A.I., Zorin A.V., Kazantsev F.P., Kanonik P.V., Mezentsev N.A., Safronov A.N., Sedov A.A., Tarasenko O.A., Khrushchev S.V., Tsukanov V.M. // Phys. Part. Nuclei Lett. 2023. V. 20. № 4. P. 904. https://www.doi.org/10.1134/S1547477123040623
  7. Шапошников Р.А., Гарахин С.А., Дуров К.В., Полковников В.Н., Чхало Н.И. // ЖТФ 2023. № 93. С. 931. https://www.doi.org/10.21883/JTF.2023.07.55748.77-23
  8. Glushkov E.I., Malyshev I.V., Petrakov E.V, Chkhalo N.I., Khomyakov Yu.V., Rakshun Ya.V., Chernov V.A., Dolbnya I.P. // J. Surf. Investig. 2023. V. 17. №. Suppl. 1. P. S233. https://www.doi.org/10.1134/S1027451023070133
  9. Chernov V.A., Bataev I.A., Rakshun Ya.V., Khomyakov Yu.V., Gorbachev M.V., Trebushinin A.E., Chkhalo N.I., Krasnorutskiy D.A., Naumkin V.S., Sklyarov A.N., Mezentsev N.A., Korsunsky A.M., Dolbnya I.P. // Rev. Sci. Instrum. 2023. V. 94. № 1. https://www.doi.org/10.1063/5.0103481
  10. Pestov A.E., Lopatin A.Y., Volkov P.V., Zorina M.V., Lukyanov A.Y., Malyshev I.V., Mikhailenko M.S., Toropov M.N., Semikov D.A., Chernyshev A.K., Chkhalo N.I., Yunin P.A., Glushkov E.I., Gordeev S.K., Korchagina S.B. // J. Synchrotron Radiat. 2024. V. 31. № 5. https://www.doi.org/10.1107/S1600577524006088
  11. X-ray DB (2024). https://xraypy.github.io/XrayDB/index.html
  12. Klementiev K., Chernikov R. // SPIE. 2014. V. 9209. P. 60. https://www.doi.org/10.1117/12.2061400
  13. Madenci E., Guven I. The Finite Element Method and Applications in Engineering Using ANSYS. Springer, 2015. 657 p. https://www.doi.org/10.1007/978-1-4899-7550-8
  14. Ho C.Y., Powell R.W., Liley P.E. // J. Phys. Chem. Ref. Data. 1972. V. 1. № 2. P. 279.
  15. Hedayat A., Khounsary A., Mashayek F. // SPIE. 2012. V. 8502. P. 167. https://www.doi.org/10.1117/12.929362
  16. Jacobson P., Stoupin S. // Diam. Relat. Mater. 2019. V. 97. P. 107469. https://www.doi.org/10.1016/j.diamond.2019.107469

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).