Application of Synchrotron Radiation for Phase Analysis of Metal-Ceramic Materials Obtained by Laser Additive Manufacturing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of the phase composition of a metal-ceramic material formed by direct laser deposition using synchrotron radiation has been studied. Electron microscopy and X-ray phase analysis demonstrate that active formation of secondary phases of compounds occurs during repeated remelting in the process of multi-layer deposition. Insignificant formation of secondary phases occurs during single-track deposition due to the short lifetime of the molten pool. It is established that an increase in the concentration of secondary phases leads to an increase in the material microhardness.

About the authors

A. A Golyshev

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: alexgol@itam.nsc.ru
Novosibirsk, Russia

I. S Gertsell

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; Novosibirsk State University; Siberian Circular Photon Source "SKIF", Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia; Novosibirsk, Russia; Koltsovo, Russia

A. P Zavjalov

Siberian Circular Photon Source "SKIF", Boreskov Institute of Catalysis SB RAS

Koltsovo, Russia

R. Z Mamutov

Siberian Circular Photon Source "SKIF", Boreskov Institute of Catalysis SB RAS

Koltsovo, Russia

A. G Malikov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk, Russia

References

  1. Malikov A.G., Golyshev A.A., Vitoshkin I.E. // J. Appl. Mech. Tech. Phys. 2023. V. 64. Р. 31. https://doi.org/10.1134/S0021894423010054
  2. Mukherjee T., Elmer J.W., Wei H.L., Lienert T. J., Zhang W., Kou S., DebRoy T. // Prog. Mater. Sci. 2023. V. 138. P. 101153. https://doi.org/10.1016/j.pmatsci.2023.101153
  3. Boyer R.R. // Mat. Sci. Eng. A. 1996. V. 213. P. 103. https://doi.org/10.1016/0921-5093(96)10233-1
  4. Gorynin I.V. // Mat. Sci. Eng. A. 1999. V. 263. P. 112. https://doi.org/10.1016/S0921-5093(98)01180-0
  5. Zhang C., Chen F., Huang Z., Jia M., Chen G., Ye Y., Lin Y., Liu W., Chen B., Shen Q., Zhang L., Lavernia E.J. // Mater. Sci. Eng. 2019 V. 764. P. 138209. https://doi.org/10.1016/J.MSEA.2019.138209
  6. Tjong S.C., Mai Y.-W. // Comp. Sci. Technol. 2008. V. 68 P. 583. https://doi.org/10.1016/j.compscitech.2007.07.016
  7. Golyshev A.A., Filippov A.A. // Nanosci. Technol 2020. V. 11. P. 247. https://doi.org/10.1615/NanoSciTechnolIntJ.2020033784
  8. Promakhov V., Zhukov A., Ziatdinov M., Zhukov I., Schulz N., Kovalchuk S., Dubkova Y., Korsmik R., Klimova-Korsmik O., Turichin G., Perminov A. // Metals. 2019. V. 9. P. 141. https://doi.org/10.3390/met9020141
  9. Golyshev A., Malikov A., Orishich A., Gulov M., Ancharov A. // Int. J. Adv. Manuf. Technol. 2021. V. 117. P. 1891. https://doi.org/10.1007/s00170-021-07842-5
  10. Dadbakhsh S., Mertens R., Hao L., Humbeeck J. Van, Kruth J. P. // Adv. Eng. Mater. 2019. V. 21. P. 1801244. https://doi.org/10.1002/ADEM.201801244
  11. Krakhmalev P., Yadroitsev I. // Intermetallics. 2014. V. 46. P. 147. https://doi.org/10.1016/j.intermet.2013.11.012
  12. Morsi K., Patel V.V. // J. Mater. Sci. 2007. V. 42. P. 2037. https://doi.org/10.1007/s10853-006-0776-2
  13. Liu S, Shin Y.C. // Mater. Des. 2019. V. 164. P. 107552. https://doi.org/10.1016/j.matdes.2018.107552
  14. Vallauri D., Atías Adrián I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  15. Dubrov A.V., Mirzade F.K., Dubrov V.D., Panchenko V.Y. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2018. V. 12. P. 54. https://doi.org/10.1134/S1027451018010081
  16. Patil A.S., Hiwarkar V.D., Verma P.K., Khatirkar R.K. // J. Alloys Compd. 2019. V. 777. P. 165. https://doi.org/10.1016/j.jallcom.2018.10.308
  17. Shamsaei N., Yadollahi A., Bian L., Thompson S.M. // Addit. Manuf. 2015. V. 8. P. 12. https://doi.org/10.1016/j.addma.2015.07.002
  18. Sing S.L., Huang S., Goh G.D., Goh G.L., Tey C.F., Tan J.H.K., Yeong W.Y. // Prog. Mater. Sci. 2021. V. 119. P. 100795. https://doi.org/10.1016/j.pmatsci.2021.100795
  19. Li H., Yang Z., Cai D., Jia D., Zhou Y. // Mater. Des. 2020. V. 185. P. 108245. https://doi.org/10.1016/j.matdes.2019.108245
  20. Golyshev A., Bulina N., Gulov M. // Lasers Manuf. Mater. Process. 2022. V. 9. P. 590. https://doi.org/10.1007/S40516-022-00193-3/ FIGURES/12

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).