Формирование тонких буферных слоев GaAs на поверхности кремния для светоизлучающих приборов

Обложка

Цитировать

Полный текст

Аннотация

В работе представлены экспериментальные результаты по исследованию процессов роста GaAs слоев на подложках кремния методом молекулярно-пучковой эпитаксии. Установлено, что формирование буферного Si слоя в едином ростовом процессе позволяет существенно повысить кристаллическое качество формируемых на его поверхности GaAs слоев, а также предотвратить формирование антифазных доменов как на разориентированных в направлении [110], так и на сингулярных на Si(100) подложках. Продемонстрировано, что применение циклического термического отжига при температурах 350–660°C в потоке атомов мышьяка позволяет снизить количество прорастающих дислокаций и повысить гладкость поверхности в GaAs слоев. Рассмотрены возможные механизмы, приводящие к улучшению качества приповерхностных слоев GaAs. Показано, что полученные таким образом слои GaAs субмикронной толщины на сингулярных подложках Si(100) обладают среднеквадратичным значением шероховатости поверхности 1.9 нм. Представлена принципиальная возможность использования тонких слоев GaAs на кремнии в качестве шаблонов для формирования на их основе светоизлучающих полупроводниковых гетероструктур с активной областью на основе самоорганизующихся квантовых точек InAs и квантовой ямы InGaAs. Показано, что полученные материалы демонстрируют фотолюминесценцию в области длины волны излучения 1.2 мкм при комнатной температуре.

Об авторах

В. В. Лендяшова

Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН

Email: erilerican@gmail.com
Россия, Санкт-Петербург; Санкт-Петербург

И. В. Илькив

Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН

Email: fiskerr@ymail.com
Россия, Санкт-Петербург; Санкт-Петербург

Б. Р. Бородин

Физико-технический институт им. А.Ф. Иоффе РАН

Email: erilerican@gmail.com
Россия, Санкт-Петербург

Д. А. Кириленко

Физико-технический институт им. А.Ф. Иоффе РАН

Email: erilerican@gmail.com
Россия, Санкт-Петербург

А. С. Драгунова

Национальный исследовательский университет “Высшая школа экономики”; Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН

Email: erilerican@gmail.com

Международная лаборатория квантовой оптоэлектроники

Россия, Санкт-Петербург; Санкт-Петербург

Т. М. Шугабаев

Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН

Автор, ответственный за переписку.
Email: erilerican@gmail.com
Россия, Санкт-Петербург; Санкт-Петербург

Г. Э. Цырлин

Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН; Университет ИТМО

Email: erilerican@gmail.com
Россия, Санкт-Петербург; Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Thomson D., Zilkie A., Bowers J.E., Komljenovic T., Reed G.T., Vivien L., Marris-Morini D., Cassan E., Virot L., Fédéli J.M., Hartmann J.M., Schmid J.H., Xu D.X., Boeuf F., O’Brien P., Mashanovich G.Z., Nedeljkovic M.N. // J. Opt. 2016. V. 18. № 7. P. 073003. https://www.doi.org/10.1088/2040-8978/18/7/073003
  2. Chen X., Milosevic M.M., Stanković S., Reynolds S., Bucio T.D., Li K., Thomson D.J., Gardes F., Reed G.T. // Proc. IEEE. 2018. V. 106. № 12. P. 2101. https://www.doi.org/10.1109/JPROC.2018.2854372
  3. Tang M., Park J.S., Wang Z., Chen S., Jurczak P., Seeds A., Liu H. // Prog. Quantum Electronics. 2019. V. 66. P. 1. https://www.doi.org/10.1016/j.pquantelec.2019.05.002
  4. Jiang C., Liu H., Wang J., Ren X., Wang Q., Liu Z., Ma B., Liu K., Ren R., Zhang Y., Cai S., Huang Y. // Appl. Phys. Lett. 2022. V. 121. № 6. P. 061102. https://www.doi.org/10.1063/5.0098264
  5. Li Q., Lau K.M. // Prog. Cryst. Growth Charact. Mater. 2017. V. 63. № 4. P. 105. https://www.doi.org/10.1016/j.pcrysgrow.2017.10.001
  6. Tanoto H., Yoon S.F., Lew K.L., Loke W.K., Dohrman C., Fitzgerald E.A., Tang L.J. // Appl. Phys. Lett. 2009. V. 95. № 14. P. 141905. https://www.doi.org/10.1063/1.3243984
  7. Loke W.K., Wang Y., Gao Y., Khaw L., Lee K.E.K., Tan C.S., Fitzgerald E.A., Yoon S.F. // Mater. Sci. Semicond. 2022. V. 146. P. 106663. https://www.doi.org/10.1016/j.mssp.2022.106663
  8. Kunert B., Mols Y., Baryshniskova M., Waldron N., Schulze A., Langer R. // Semicond. Sci. Technol. 2018. V. 33. № 9. P. 093002. https://www.doi.org/10.1088/1361-6641/aad655
  9. Norman J.C., Jung D., Zhang Z., Wan Y., Liu S., Shang C., Herrick R.W., Chow W.W., Gossard A.C., Bowers J.E. // IEEE J. Quantum Electron. 2019. V. 55. № 2. P. 1. https://www.doi.org/10.1109/JQE.2019.2901508
  10. Norman J., Kennedy M.J., Selvidge J., Li Q., Wan Y., Liu A.Y., Callahan P.G., Echlin M.P., Pollock T.M., Lau K.M., Gossard A.C., Bowers J.E. // Opt. Express. 2017. V. 25. № 4. P. 3927. https://www.doi.org/10.1364/OE.25.003927
  11. Wan Y., Norman J., Li Q., Kennedy M.J., Di L., Zhang C., Huang D., Zhang Z., Liu A.Y., Torres A., Jung D., Gossard A.C., Hu E.L., Lau K.M., Bowers J.E. // Optica. 2017. V. 4. № 8. P. 940. https://www.doi.org/10.1364/OPTICA.4.000940
  12. Benyoucef M., Alzoubi T., Reithmaier J.P., Wu M., Trampert A. // Physica Status Solidi A. 2014. V. 211. № 4. P. 817. https://www.doi.org/10.1002/pssa.201330395
  13. Wu M., Trampert A., Al-Zoubi T., Benyoucef M., Reithmaier J.P. // Acta Materialia. 2015. V. 90. P. 133. https://www.doi.org/10.1016/j.actamat.2015.02.042
  14. Wang J.S., Chen J.F., Huang J.L., Wang P.Y., Guo X.J. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3027. https://www.doi.org/10.1063/1.1323735
  15. Zhao Z.M., Hul’ko O., Kim H.J., Liu J., Sugahari T., Shi B., Xie Y.H. // J. Crystal Growth. 2004. V. 271. № 3–4. P. 450. https://www.doi.org/10.1016/j.jcrysgro.2004.08.013
  16. Kwoen J., Jang B., Lee J., Kageyama T., Watanabe K., Arakawa Y. // Optics Express. 2018. V. 26. № 9. P. 11568. https://www.doi.org/10.1364/OE.26.011568
  17. Wang Y., Ma B., Li J., Liu Z., Jiang C., Li C., Lui H., Zhang Y., Zhang Y., Wang Q., Xie X., Qiu X., Ren X., Wei X. // Optics Express. 2023. V. 31. № 3. P. 4862. https://www.doi.org/10.1364/OE.475976
  18. Wang T., Liu H., Lee A., Pozzi F., Seeds A. // Optics Express. 2011. V. 19. № 12. P. 11381. https://www.doi.org/10.1364/OE.19.011381
  19. Chen S.M., Tang M.C., Wu J., Jiang Q., Dorogan V.G., Benamara M., Mazur Y.I., Salamo G.J., Seeds A.J., Liu H. // Electronics Lett. 2014. V. 50. № 20. P. 1467. https://www.doi.org/10.1049/el.2014.2414
  20. Chen S., Li W., Wu J., Jiang Q., Tang M., Shutts S., Elliott S.N., Sobiesierski A., Seeds A.J., Ross I., Smowton P.M., Liu H. // Nature Photonics. 2016. V. 10. № 5. P. 307. https://www.doi.org/10.1038/nphoton.2016.21
  21. Ishizaka A., Shiraki Y. // J. Electrochem. Soc. 1986. V. 133. № 4. P. 666. https://www.doi.org/10.1149/1.2108651
  22. Kasu M., Kobayashi N. // Jpn. J. Appl. Phys. 1994. V. 33. № 1S. P. 712. https://www.doi.org/10.1143/jjap.33.712
  23. Kasu M., Kobayashi N. // J. Appl. Phys. 1995. V. 78. № 5. P. 3026. https://www.doi.org/10.1063/1.360053
  24. Choi D., Harris J.S., E. Kim E., McIntyre P.C., Cagnon J., Stemmer S. // J. Cryst. Growth. 2009. V. 311. № 7. P. 1962. https://www.doi.org/10.1016/j.jcrysgro.2008.09.138
  25. Jung D., Callahan P.G., Shin B., Mukherjee K., Gossard A.C., Bowers J.E. // J. Appl. Phys. 2017. V. 122. № 22. P. 225703. https://www.doi.org/10.1063/1.5001360
  26. Садофьев Ю. Г. // Физика и техника полупроводников. 2012. Т. 46. № . 11. С. 1393. https://www.doi.org/10.1134/S106378261211019X
  27. Ilkiv I., Lendyashova V., Talalaev V., Borodin B., Mokhov D., Reznik R., Cirlin G. MBE Growth and Optical Properties of InAs Quantum Dots in Si. // Proc. 2022 International Conference Laser Optics, Saint Petersburg, Russia. 2022. P. 1. https://www.doi.org/10.1109/ICLO54117.2022. 9839762
  28. Lendyashova V.V., Ilkiv I.V., Borodin B.R., Ubyivovk E.V., Reznik R.R., Talalaev V.G., Cirlin G.E. // St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2022. V. 15. Iss. 3.2. P. 75. https://www.doi.org/10.18721/JPM.153.214
  29. Bansal B., Gokhale M.R., Bhattacharya A., Arora B.M. // J. Appl. Phys. 2007. V. 101. № 9. P. 094303. https://www.doi.org/10.1063/1.2710292
  30. Su X.B., Ding Y., Ma B., Zhang K.L., Chen Z.S., Li J.L., Cui X.R., Xu Y.Q., Ni H.Q., Niu Z.C. // Nanoscale Res. Lett. 2018. V. 13. P. 1. https://www.doi.org/10.1186/s11671-018-2472-y

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».