High-resolution x-ray micro-optics: technologies and materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The prospects for using high-resolution X-ray micro-lenses for coherent visualization tasks are discussed. Modern technologies and methods of micro-processing for the manufacture of 2D microlenses are considered using laser systems, ion-beam lithography and additive technologies as an example. The efficiency of various materials for X-ray micro-optics applications is evaluated and the time spent on manufacturing 100 nm resolution micro objectives using ion-beam lithography system is optimized.

Full Text

Restricted Access

About the authors

I. I. Lyatun

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

P. N. Medvedskaya

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

А. S. Korotkov

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

S. А. Shevyrtalov

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

S. S. Lyatun

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

А. А. Snigirev

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

Russian Federation, Kaliningrad

References

  1. Snigirev A., Snigireva I., Lengeler B., Kohn V. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org./10.1038/384049a0
  2. Roth T., Alianelli L., Lengeler D., Snigirev A., Seiboth F. // MRS Bull. 2017. V. 42. № 6. P. 430. https://doi.org./10.1557/mrs.2017.117
  3. Snigirev A., Snigireva I. // Comptes Rendus Physique. 2008. V. 9. № 5–6. P. 507. https://doi.org./10.1016/j.crhy.2008.02.003
  4. Medvedskaya P., Lyatun I., Golubenko K., Yunkin V., Snigireva I., Snigirev A. // Proc. SPIE. EUV and X-ray Optics, Sources, Instrumentation. 2021. V. 117760I. P. 84. https://doi.org/10.1117/12.2589310
  5. Barannikov A., Polikarpov M., Ershov P., Bessonov V., Abrashitova K., Snigireva I., Yunkin V., Bourenkov G., Schneider T., Fedyaninc A.A., Snigirev A. // J. Synchr. Radiat. 2019. V. 26. № 3. P. 714–719. https://doi.org./10.1107/S1600577519001656
  6. Medvedskaya P., Lyatun I. Shevyrtalov S., Korotkov A., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // AIP Conf. Proc. 2020. V. 2299. P. 060011. https://doi.org./10.1063/5.0030736
  7. X-Ray Optics Calculator IMT RAS. Chernogolovka, 2010. http://nano.iptm.ru/xcalc/xcalc_mysql/crl_par.php. Cited 07 December 2023
  8. Kobayashi V. // J. Mater. Sci. 1988. V. 23. P. 4392. https://doi.org./10.1007/BF00551937
  9. Snigireva I., Polikarpov M., Snigirev A. // Synchr. Radiat. News. 2021. V. 34. № 6. P. 12. https://doi.org./10.1080/08940886.2021.2022387
  10. Sanli U.T., Rodgers G., Zdora M.-C., Qi P., Garrevoet J., Falch K. V., Müller B., David C., Vila-Comamala J. // Light: Sci. Applications. 2023. V. 12. № 1. P. 107. https://doi.org./10.1038/s41377-023-01157-8
  11. Petrov A., Bessonov V., Abrashitova K., Kokareva N., Safronov K., Barannikov A., Ershov P., Klimova N., Lyatun I., Yunkin V., Polikarpov M., Snigireva I., Fedyanin A., Snigirev A. // Opt. Express. 2017. V. 25. № 13. P. 14173. https://doi.org./10.1364/OE.25.014173
  12. Polikarpov M., Kononenko T., Ralchenko V., Ashkinazi E., Konov V., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Polikarpov V., Snigirev A. // Proc. SPIE. Advances in X-Ray/EUV Optics and Components XI. 2016. P. 99630Q. https://doi.org./10.1117/12.2238029
  13. Medvedskaya P., Lyatun I., Shevyrtalov S., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // Opt. Express. 2020. V. 28. № 4. P. 4773. https://doi.org./10.1364/OE.384647
  14. Brogden V., Johnson C., Rue C., Graham J., Langworthy K., Golledge J., McMorran B. // Adv. Mater. Sci. Engin. 2021. V. 2021. P. 8842777. https://doi.org./10.1155/2021/8842777
  15. Burnett T., Kelley R., Winiarski B., Contreras L., Daly M., Gholinia A., Burke M.G., Withers P.J. // Ultramicroscopy. 2016. V. 161. P. 119. https://doi.org./10.1016/j.ultramic.2015.11.001
  16. Fu J., Joshi S. B., Catchmark J.M. // J. Vac. Sci. Technol. A. 2008. V. 26. № 3. P. 422. https://doi.org./10.1116/1.2902962
  17. Ziegler J.F. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 219. P. 1027. https://doi.org./10.1016/j.nimb.2004.01.208
  18. Lyatun I., Ershov P., Snigireva I., Snigirev A. // J. Synchr. Radiat. 2020. V. 27. № 1. P. 44. https://doi.org./10.1107/S1600577519015625
  19. Polikarpov M., Emerich H., Klimova N., Snigireva I., Savin V., Snigirev A. // Phys. Stat. Sol. B. 2018. V. 255. № 1. P. 1700229. https://doi.org./10.1002/pssb.201700229
  20. Snigireva I., Irifune T., Shinmei T., Medvedskaya P., Shevyrtalov S., Bourenkov G., Polikarpov M., Rashchenko S., Snigirev A., Lyatun I. // Proc. SPIE. Advances in X-Ray/EUV Optics and Components XVI. 2021. V. 11837. P. 8. https://doi.org./10.1117/12.2594675
  21. Adams D.P., Vasile M.J., Mayer T.M., Hodges V.C. // J. Vac. Sci. Technol. B. 2003. V. 21. № 6. P. 2334. https://doi.org./10.1116/1.1619421

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of refractive and compound lenses.

Download (26KB)
3. Fig. 2. Comparison of optical characteristics of X-ray optics materials (a), optical characteristics of a compound refractive lens depending on the radius of curvature of the parabolic profile (b).

Download (36KB)
4. Fig. 3. Manufacturing of a diamond microlens by ion-beam lithography using gas chemistry (light areas – redeposited material), radius of curvature of the lens: a – 5.9; b – 3.3 µm.

Download (21KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».