IN SILICO ANALYSIS OF T-CELL RECEPTORS SPECIFIC TO THE MINOR HISTOCOMPATIBILITY ANTIGEN HA-2

Cover Page

Cite item

Full Text

Abstract

Hematopoietic stem cells transplantation of (HSCT) from the related or unrelated donor is used as a treatment for hematopoietic system malignancies. However, transplantation triggers an immune response of the donor cells to the recipient’s antigens. The response to the healthy tissues is called a graft versus host reaction (GVHD), and the response to the hematopoietic tissue in the context of malignant disease is called a graft versus leukemia (GVL) eff ect. The development of GVL reactivity is a favorable consequence of transplantation, since it eliminates residual tumor cells and prevents the relapse. It was demonstrated that immune response arises towards polymorphic peptides, presented in the molecules of the major histocompatibility complex (HLA). Such peptides are derived from the proteasomal degradation of proteins expressed from the genes with non-synonymous single nucleotide polymorphisms and are referred to as minor histocompatibility antigens (MiHA). Studying the structure of T- cell receptor (TCR) repertoires that recognize MiHAgs can help identify the mechanisms for the formation of the alloreactive response and is important for predicting the antigen of alloreactive clones with unknown specificity. In this article the genetic sequences encoding T-cell receptors specific to the HA-2 minor antigen were determined and analyzed in silico. We found the predominant use of the V21 and J42 segments in the formation of the CDR3 region of the α-chain and the presence of the V7-8 segment in most CDR3 β-chain regions, which indicates the existence of a conservative motif responsible for recognizing the HA-2 antigen.

About the authors

S. A. Sheetikov

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC);
Lomonosov Moscow State University

Author for correspondence.
Email: sheetikov.s@blood.ru

trainee-researcher, laboratory of transplantation immunology,

Moscow

Russian Federation

A. A. Kuchmiy

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC)

Email: fake@neicon.ru

PhD (Biology), research scientist, laboratory of transplantation immunology,

Moscow

Russian Federation

N. A. Bykova

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC)

Email: fake@neicon.ru

research scientist, laboratory of transplantation immunology,

Moscow

Russian Federation

S. Yu. Filkin

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC)

Email: fake@neicon.ru

research scientist, laboratory of transplantation immunology,

Moscow

Russian Federation

D. S. Romaniuk

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC)

Email: fake@neicon.ru

research scientist, laboratory of transplantation immunology,

Moscow 

Russian Federation

G. A. Efimov

National Research Center for Hematology, Russian Academy of Medical Sciences (HSC);
Lomonosov Moscow State University

Email: fake@neicon.ru

PhD (Biology), Head of Laboratory, laboratory of transplantation immunology

Moscow

Russian Federation

References

  1. Barrett A. J., Battiwalla M. Relapse after allogeneic stem cell transplantation. Expert Rev Hematol 2010, 3, 429–441.
  2. Birnbaum M. E., Mendoza J. L., Sethi D. K., Dong S., Glanville J., Dobbins J., Özkan E., Davis M. M., Wucherpfennig K. W., Garcia K. C. Deconstructing the peptideMHC specificity of T cell recognition. Cell 2014, 157, 1073–1087.
  3. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest 1968, Suppl 97, 77–89.
  4. Chapuis F., Rosenzwajg M., Yagello M., Ekman M., Biberfeld P., Gluckman J. C. Diff erentiation of human dendritic cells from monocytes in vitro. European Journal of Immunology 1997, 27, 431–441.
  5. Dash P., Fiore-Gartland A. J., Hertz T., Wang G. C., Sharma S., Souquette A., Crawford J. C., Clemens E. B., Nguyen T. H.O., Kedzierska K. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 2017, 547, 89.
  6. den Haan J. M., Sherman N. E., Blokland E., Huczko E., Koning F., Drijfhout J. W., Skipper J., Shabanowitz J., Hunt D. F., Engelhard V. H., and et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995, 268, 1476–1480.
  7. Glanville J., Huang H., Nau A., Hatton O., Wagar L. E., Rubelt F., Ji X., Han A., Krams S. M., Pettus C., et al. Identifying specificity groups in the T cell receptor repertoire. Nature 2017, 547, 94–98.
  8. Heemskerk M.H., Hoogeboom M., de Paus R. A., Kester M. G., van der Hoorn M. A., Goulmy E., Willemze R., Falkenburg J. H. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003, 102, 3530–3540.
  9. Heemskerk M. H., Hoogeboom M., Hagedoorn R., Kester M. G., Willemze R., Falkenburg J. H. Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004, 199, 885–894.
  10. Hobo W., Broen K., van der Velden W. J., Greupink-Draaisma A., Adisty N., Wouters Y., Kester M., Fredrix H., Jansen J. H., van der Reij den B., et al. Association of disparities in known minor histocompatibility antigens with relapse-free survival and graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2013, 19, 274–282.
  11. Li H. M., Hiroi T., Zhang Y., Shi A., Chen G., De S., Metter E. J., Wood W. H., Sharov A., Milner J. D., et al. TCRβ repertoire of CD4(+) and CD8(+) T cells is distinct in richness, distribution, and CDR3 amino acid composition. Journal of Leukocyte Biology 2016, 99, 505–513.
  12. Madi A., Poran A. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. 2017, 6.
  13. Mamedov I. Z., Britanova O. V., Zvyagin I. V., Turchaninova M. A., Bolotin D. A., Putintseva E. V., Lebedev Y. B., Chudakov D. M. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol 2013, 4, 456.
  14. Meij P., Jedema I., van der Hoorn M. A., Bongaerts R., Cox L., Wafelman A. R., Marij t E. W., Willemze R., Falkenburg J. H. Generation and administration of HA-1- specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 2012, 97, 1205– 1208.
  15. Toebes M., Rodenko B., Ovaa H., Schumacher T. N. Generation of peptide MHC class I monomers and multimers through ligand exchange. Curr Protoc Immunol 2009, Chapter 18, Unit 18 16.
  16. van Bergen C. A., van Luxemburg-Heij s S. A., de Wreede L. C., Eefting M., von dem Borne P. A., van Balen P., Heemskerk M. H., Mulder A., Claas F. H., Navarrete M. A., et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest 2017, 127, 517–529.
  17. Vdovin A. S., Postovskaya A. M., Bykova N. A., Romaniuk D. S., Alieva A. K., Yefimova P. R., Sheetikov S. A., Julhakyan H. L., Efimov G. A. Comparative analysis of minor histocompatibility antigens genotyping methods. Oncohematology 2016, 11, 40–50.
  18. Warren E.H., Fujii N., Akatsuka Y., Chaney C. N., Mito J. K., Loeb K. R., Gooley T. A., Brown M. L., Koo K. K., Rosinski K. V., et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 2010, 115, 3869–3878.
  19. Wolfl M., Greenberg P. D. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc 2014, 9, 950–966.
  20. Wolfl M., Kuball J., Ho W. Y., Nguyen H., Manley T. J., Bleakley M., Greenberg P. D. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8(+) T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007, 110, 201–210.
  21. Zvyagin I.V., Pogorelyy M. V., Ivanova M. E., Komech E. A., Shugay M., Bolotin D. A., Shelenkov A. A., Kurnosov A. A., Staroverov D. B., Chudakov D. M., et al. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America 2014, 111, 5980–5985.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Sheetikov S.A., Kuchmiy A.A., Bykova N.A., Filkin S.Y., Romaniuk D.S., Efimov G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».