Histological analysis of the spleen of rats immunized with SARS-CoV-2 S protein

Cover Page

Cite item

Full Text

Abstract

SARS-CoV-2 infection can lead to pathological disorders in various organs due to the ubiquitous of angiotensin-converting enzyme 2 (ACE2), which serves as a receptor for SARS-CoV-2. However, tissue damage may not only be the result of viral infection. SARS-CoV-2 has been shown to induce the production of autoantibodies to ACE2, and their presence is associated with disease severity. The spleen is one of the targets for COVID-19. The presence of ACE2 in the red pulp sinus endothelium cells of the spleen and in tissue-resident CD169+ macrophages positioned in the splenic marginal zone makes these cells a potential target of autoimmune reactions to ACE2 triggered by SARS-CoV-2. In addition, antibodies to the SARS-CoV-2 S protein cross-react with a wide range of human tissue proteins and can cause tissue damage. The most common splenic pathologies in deceased COVID-19 patients are lymphocyte depletion and subsequent hemaphagocytosis. Since the spleen plays a fundamental role in the immune response regulation, splenic damage could be one of the causes of immune perturbations associated with severe COVID-19. To test the hypothesis of the autoimmune nature of COVID-19, we developed a non-infectious experimental model of autoimmune multiorgan damage caused by immunization with SARS-CoV-2 S protein. The purpose of this work was to study the spleen in rats with induced multiorgan damage caused by immunization with SARS-CoV-2 S protein, as well as the influence of pre-existing autoimmune disease on the severity of splenic damage caused by an immune response against S protein. Intact Wistar rats and Wistar rats with completed experimental autoimmune encephalomyelitis were immunized with S protein in incomplete Freund’s adjuvant (IFA). Control rats received an injection of IFA. No changes were detected in the secondary follicles number in the spleen of rats immunized with the SARS-CoV-2 S protein. However, in the spleen of rats with previously induced autoimmune encephalomyelitis, immunization with SARS-CoV-2 S protein caused a significant decrease in the number of secondary follicles relative to the control group. Hemosiderin deposits and macrophage hyperplasia of the marginal zones of the white pulp were detected in both groups immunized with S protein. Thus, immunization with the S protein of SARS-CoV-2 causes changes in the spleen of rats similar to those detected in patients who died from COVID-19. Damage to the spleen is more varied and pronounced in rats with previous experimental encephalomyelitis.

About the authors

K. V. Fomina

Udmurt State University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: fomiksa@yandex.ru

PhD (Biology), Senior Research Associate, Laboratory of Molecular and Cell Immunology, Senior Research Associate, Laboratory of Biocompatible Materials

Russian Federation, Izhevsk; Izhevsk

T. V. Khramova

Udmurt State University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: fomiksa@yandex.ru

PhD (Biology), Senior Research Associate, Laboratory of Molecular and Cell Immunology, Research Associate, Laboratory of Biocompatible Materials

Russian Federation, Izhevsk; Izhevsk

A. S. Terentiev

Udmurt State University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: fomiksa@yandex.ru

Senior Research Associate, Laboratory of Molecular and Cell Immunology, Research Associate, Laboratory of Biocompatible Materials

Russian Federation, Izhevsk; Izhevsk

O. S. Terentievа

Udmurt State University

Email: fomiksa@yandex.ru

Junior Research Associate, Laboratory of Molecular and Cell Immunology

Russian Federation, Izhevsk

References

  1. Arthur J.M., Forrest J.C., Boehme K.W., Kennedy J.L., Owens S., Herzog C., Liu J., Harville T.O. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PloS One, 2021, Vol. 16, no. 9, e0257016. doi: 10.1371/journal.pone.0257016.
  2. Boes K.M., Durham A.C. Bone Marrow, Blood Cells, and the Lymphoid/Lymphatic System. In: Pathologic Basis of Veterinary Disease (Sixth Edition), Chapter 13 – Bone Marrow, Blood Cells, and the Lymphoid/Lymphatic System. Ed. J. F. Zachary, Mosby, 2017, pp. 724-804.e2.
  3. Bryce C., Grimes Z., Pujadas E., Ahuja S., Beasley M.B., Albrecht R., Hernandez T., Stock A., Zhao Z., AlRasheed M.R., Chen J., Li L., Wang D., Corben A., Haines G.K. 3rd, Westra W.H., Umphlett M., Gordon R.E., Reidy J., Petersen B., Salem F., Fiel M.I., El Jamal S.M., Tsankova N.M., Houldsworth J., Mussa Z., Veremis B., Sordillo E., Gitman M.R., Nowak M., Brody R., Harpaz N., Merad M., Gnjatic S., Liu W.C., Schotsaert M., Miorin L., Aydillo Gomez T.A., Ramos-Lopez I., Garcia-Sastre A., Donnelly R., Seigler P., Keys C., Cameron J., Moultrie I., Washington K.L., Treatman J., Sebra R., Jhang J., Firpo A., Lednicky J., Paniz-Mondolfi A., Cordon-Cardo C., Fowkes M.E. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod. Pathol., 2021, Vol. 34, no. 8, pp. 1456-1467.
  4. Fan M., Qiu W., Bu B., Xu Y., Yang H., Huang D., Lau A.Y., Guo J., Zhang M.N., Zhang X., Yang C.S., Chen J., Zheng P., Liu Q., Zhang C., Shi F.D. Risk of COVID-19 infection in MS and neuromyelitis optica spectrum disorders. Neurol. Neuroimmunol. Neuroinflamm., 2020, Vol. 7, no. 5, e787. doi: 10.1212/NXI.0000000000000787.
  5. Feng Z., Diao B., Wang R., Wang G., Wang C., Tan Y., Liu L., Wang C., Liu Y., Liu Y., Yuan Z., Ren L., Wu Y., Chen Y. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. MedRxiv, 2020. doi: 10.1101/2020.03.27.20045427.
  6. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, Vol. 203, no. 2, pp. 631-637.
  7. Hammoud H., Bendari A., Bendari T., Bougmiza I. Histopathological Findings in COVID-19 Cases: A Systematic Review. Cureus, 2022, Vol. 14, no. 6, e25573. doi: 10.7759/cureus.25573.
  8. Kaneko N., Kuo H.H., Boucau J., Farmer J.R., Allard-Chamard H., Mahajan V.S., Piechocka-Trocha A., Lefteri K., Osborn M., Bals J., Bartsch Y.C., Bonheur N., Caradonna T.M., Chevalier J., Chowdhury F., Diefenbach T.J., Einkauf K., Fallon J., Feldman J., Finn K.K., Garcia-Broncano P., Hartana C.A., Hauser B.M., Jiang C., Kaplonek P., Karpell M., Koscher E.C., Lian X., Liu H., Liu J., Ly N.L., Michell A.R., Rassadkina Y., Seiger K., Sessa L., Shin S., Singh N., Sun W., Sun X., Ticheli H.J., Waring M.T., Zhu A.L., Alter G., Li J.Z., Lingwood D., Schmidt A.G., Lichterfeld M., Walker B.D., Yu X.G., Padera R.F. Jr, Pillai S. Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell, 2020, Vol. 183, no. 1, pp. 143-157.e13.
  9. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol., 2020, Vol. 5, no. 49, eabd7114. doi: 10.1126/sciimmunol.abd7114.
  10. Li H., Liu L., Zhang D., Xu J., Dai H., Tang N., Su X., Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, 2020, Vol. 395, no. 10235, pp. 1517-1520.
  11. Liu Y., Sawalha A.H., Lu Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol., 2021, Vol. 33, no. 2, pp. 155-162.
  12. McMillan P., Uhal B.D. COVID-19 – A theory of autoimmunity to ACE-2. MOJ Immunol., 2020, Vol. 7, no. 1, pp. 17-19.
  13. Prilutskiy A., Kritselis M., Shevtsov A., Yambayev I., Vadlamudi C., Zhao Q., Kataria Y., Sarosiek S.R., Lerner A., Sloan J.M., Quillen K., Burks E.J. SARS-CoV-2 Infection–associated hemophagocytic lymphohistiocytosis: an autopsy series with clinical and laboratory correlation. Am. J. Clin. Pathol., 2020, Vol. 154, no. 4, pp. 466-474.
  14. Qiu Y., Batruch M., Naghavian R., Jelcic I., Vlad B., Hilty M., Ineichen B., Wang J., Sospedra M., Martin R. Covid-19 vaccination can induce multiple sclerosis via cross-reactive CD4+ T cells recognizing SARS-CoV-2 spike protein and myelin peptides. Mult. Scler., 2022, Vol. 28, no. 3S, 776.
  15. Salter A., Halper J., Bebo B., Kanellis P., Costello K., Cutter G., Newsome S., Li D., Fox R., Rammohan K., Cross A. COViMS Registry: Clinical characterization of SARS-CoV-2 infected multiple sclerosis patients in North America. Mult. Scler., 2020, Vol. 26, no. 3S, 97, LB1242: MSVirtual 2020 – 8th Joint ACTRIMS-ECTRIMS Meeting, September 11-13, 2020.
  16. Topolski M., Soti V. Effects of COVID-19 on multiple sclerosis relapse: a comprehensive review. Int. J. Med. Stud., 2022, Vol. 10, no. 2, pp. 192-201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Cross sections of the rat spleen Note. А, a control rat (secondary follicles are indicated by arrows). В, a rat immunized with SARS-CoV-2 S protein after preliminary induction of EAE. С, an area of the red pulp of rats with a diffuse distribution of hemosiderin (arrows). D, focal hemosiderin deposits (arrows). Е, an area of the white pulp of a control rat; no hyperplasia of macrophages was detected in the marginal zone; F – an area of the white pulp of a rat immunized with SARS-CoV-2 S protein, with macrophage hyperplasia in the marginal zone (arrows). Dotted arrows indicate marginal zones. GC- germinal center. Scale bar in А, В – 5 μm; in С, D, Е, F – 45 μm. Hematoxylin-eosin staining.

Download (2MB)

Copyright (c) 2024 Fomina K.V., Khramova T.V., Terentiev A.S., Terentievа O.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».