Primary screening of chemically modified immunosuppressive oligonucleotides using in vitro model with spleen lymphocytes

Cover Page

Cite item

Full Text

Abstract

Control of immune response following transplantation of cells, tissues, or organs includes reduction negative effects caused by acute graft-versus-host disease (GVHD) developing during bone marrow transplantation, thus being an urgent task of modern clinical practice. In this view, the management of immunological tolerance is a promising approach, in particular, the ability of immune cells (especially, dendritic cells) to induce this response using experimental models of allogeneic transplant rejection, GVHD and autoimmune disorders. Therefore, the search for compounds that can effectively activate or suppress immune cells and regulate immunological tolerance is of importance. The purpose of this work was to study the effects of synthetic immunosuppressive oligodeoxynucleotides (INH-ODN) on in vitro splenocyte proliferation and IL-12 production, in order to select the most promising compounds for subsequent in vivo experiments. We have tested several immunosuppressive agents: thiophosphate oligodeoxynucleotides (A151, ODN2088 and ODN4084-F), which include G-rich regions, as well as their analogues, i.e., thiophosphate oligodeoxynucleotides with mesylphosphoramide (ì) modifications at GpG bonds (ì-A151, ì-ODN2088 and ì-ODN4084-F). The effects of chemically modified oligonucleotides were assessed in the in vitro model of CpG-stimulated splenocytes, using CpG-ODN SD-101 in its complete thiophosphate (PS) version. Primary in vitro screening of immunosuppressive oligonucleotides by their effect on splenocyte proliferation and IL-12 production enabled us to identify the most active compounds and determine the features of sequences with the most pronounced immunosuppressive properties, as well as establish optimal concentrations of the studied oligodeoxynucleotides selected for subsequent in vivo studies.

About the authors

E. D. Gavrilova

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Research Institute of Fundamental and Clinical Immunology

Author for correspondence.
Email: edav.gavr@mail.ru

PhD (Biology), Head оf Laboratory of Experimental Immunotherapy; Senior Researcher of the Laboratory of Immunology of nucleic acids.

Russian Federation, Novosibirsk; Novosibirsk

E. V. Goiman

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Research Institute of Fundamental and Clinical Immunology

Email: edav.gavr@mail.ru

PhD (Medicine), Research Associate, Laboratory of Experimental Immunotherapy, Engineer, Laboratory of Immunology of Nucleic Acids

Russian Federation, Novosibirsk; Novosibirsk

A. S. Derzalova

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: edav.gavr@mail.ru

Junior Research Associate, Laboratory of Immunology of Nucleic Acids

Russian Federation, Novosibirsk

D. A. Stetsenko

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: edav.gavr@mail.ru

PhD (Chemistry), Head, Laboratory of Chemistry of Nucleic Acids, Head, Russo-Franco-Japanese Laboratory of Bionanotechnology, Faculty of Physics

Russian Federation, Novosibirsk; Novosibirsk

E. A. Burakova

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: edav.gavr@mail.ru

PhD (Chemistry), Head, Laboratory of Immunology of Nucleic Acids, Research Associate, Russo-Franco-Japanese Laboratory of Bionanotechnology, Faculty of Physics

Russian Federation, Novosibirsk; Novosibirsk

References

  1. Головинская О.В., Байкова М.Л., Алпатова Н.А., Зубков Д.А., Фоменко В.В., Гайдерова Л.А. Сравнительный анализ красителей, используемых при оценке специфической активности лекарственных средств на основе филграстима биологическим методом in vitro // БИОпрепараты. Профилактика, диагностика, лечение, 2020. Т. 20, № 3. С. 193-201. [Golovinskaya O.V., Baykova M.L., Alpatova N.A., Zubkov D.A., Fomenko V.V., Gaiderova L.A. Comparative analysis of dyes used in assessing the specific activity of filgrastim-based drugs using a biological method in vitro. BIOpreparaty. Profilaktika, diagnostika, lechenie = Biopreparations. Prevention, Diagnosis, Treatment, 2020, Vol. 20, no. 3, pp. 193-201. (In Russ.)]
  2. Останин А.А., Леплина О.Ю., Буракова Е.А., Тыринова Т.В., Фокина А.А., Проскурина А.С., Богачев С.С., Стеценко Д.А., Черных Е.Р. CpG олигонуклеотиды с модифицированными фосфатными группами индуцируют созревание миелоидных дендритных клеток человека in vitro // Вавиловский журнал генетики и селекции, 2020. Т.24, № 6. С. 653-660. [Ostanin A.A., Leplina O.Y., Burakova E.A., Tyrinova T.V., Fokina A.A., Proskurina A.S., Bogachev S.S., Stetsenko D.A., Chernykh E.R. Phosphate-modified CpG oligonucleotides induce in vitro maturation of human myeloid dendritic cells. Vavilovskiy zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding. 2020, Vol. 24, no 6, pp. 653-660. (In Russ.)]
  3. Anderson B.A., Freestone G.C., Low A., De-Hoyos C.L., III W.J.D., Østergaard M.E., Migawa M.T., Fazio, M., Wan, W.B., Berdeja, A., Scandalis E., Burel S.A., Vickers T.A., Crooke S.T., Swayze E.E., Liang X., Seth P.P. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res., 2021, Vol. 49, no. 16, pp. 9026–9041.
  4. Audiger C., Rahman M.J., Yun T.J., Tarbell K.V., Lesage S. The importance of dendritic cells in maintaining immune tolerance. J. Immunol., 2017, Vol. 198, pp. 2223-2231.
  5. Bayik D., Gursel I., Klinman D.M. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol. Res., 2016, Vol. 105, pp. 216-225.
  6. Gratwohl A., Baldomero H. Trends of hematopoietic stem cell transplantation in the third millennium. Curr. Opin. Hematol., 2009, Vol. 16, no. 6, pp. 420-426.
  7. Haniffa M., Collin M., Ginhoux F. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv. Immunol., 2013, Vol. 120, pp. 1-49.
  8. Lutz M.B. Induction of CD4(+) regulatory and polarized effector/helper T cells by dendritic cells. Immune Netw., 2016, no. 16, pp. 13-25.
  9. Maldonado R.A., von Andrian U.H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol., 2010, Vol. 108, pp. 111-165.
  10. Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc. Natl. Acad. Sci. USA, 2019, Vol. 116, no. 4, рр. 1229-1234.
  11. Patutina O.A., Gaponova (Miroshnichenko) S.K., Senkova A.V., Savin I.A., Gladkikh D.V., Burakova E.A., Fokina A.A., Maslov M.A., Shmendel E.V., Wood M.J.A., Vlassov V.V., Altman S., Stetsenko D.A., Zenkova M.A. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc. Natl. Acad. Sci. USA. 2020, Vol. 117, no. 51, рр. 32370-32379.
  12. Qian C., Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin. Immunol., 2018, Vol. 35, no. 2, pp. 3-11.
  13. Raker V.K., Domogalla M.P., Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front. Immunol., 2015, Vol. 6, 569. doi: 10.3389/fimmu.2015.00569.
  14. Socié G., Blazar B.R. Acute graft-versus-host disease: from the bench to the bedside. Blood, 2009, Vol. 114, no. 20, pp. 4327-4336.
  15. Su Y., Fujii H., Burakova E.A., Chelobanov B.P., Fujii M., Stetsenko D.A., Filichev V.V. Neutral and negatively charged phosphate modifications altering thermal stability, kinetics of formation and monovalent ion dependence of DNA G-Quadruplexes. Chem. Asian J., 2019, Vol. 14, no. 8, pp. 1212-1220.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Production of IL-12p70 cytokine by CpG-stimulated splenic lymphocytes Note. Y-axis concentration (pg/mL). The abscissa shows ODN groups and the CpG doses ratio: IND-ODN. Light column, CpG-stimulated splenocytes without ODN; gray column, dose 1: 1 (2,5 g/mL); black column, dose 1: 2 (5 g/mL). 1, NTC; 2, CpG; 3, ODN2; 4, ODN3; 5, ODN4; 6, ODN5; 7, ODN6; 8, ODN7; 9, ODN8; 10, ODN9.

Download (70KB)

Copyright (c) 2024 Gavrilova E.D., Goiman E.V., Derzalova A.S., Stetsenko D.A., Burakova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).